Partial Differential Equations in Conformal Geometry
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 2, Tome 2 (2003), pp. 95-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present our recent work on conformally compact Einstein 4-manifolds. We present our discovery of a conformal compactification by positive eigenfunctions and many interesting consequences of this compactification in the study of topology of conformally compact Einstein 4-manifolds.
@article{CMFD_2003_2_a5,
     author = {J. Qing},
     title = {Partial {Differential} {Equations} in {Conformal} {Geometry}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {95--102},
     publisher = {mathdoc},
     volume = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2003_2_a5/}
}
TY  - JOUR
AU  - J. Qing
TI  - Partial Differential Equations in Conformal Geometry
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2003
SP  - 95
EP  - 102
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2003_2_a5/
LA  - ru
ID  - CMFD_2003_2_a5
ER  - 
%0 Journal Article
%A J. Qing
%T Partial Differential Equations in Conformal Geometry
%J Contemporary Mathematics. Fundamental Directions
%D 2003
%P 95-102
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2003_2_a5/
%G ru
%F CMFD_2003_2_a5
J. Qing. Partial Differential Equations in Conformal Geometry. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 2, Tome 2 (2003), pp. 95-102. http://geodesic.mathdoc.fr/item/CMFD_2003_2_a5/

[A1] Anderson M., “$L^2$ curvature and volume renormalization of the AHE metrics on 4-manifolds”, Math. Res. Lett., 8 (2001), 171–188 | MR | Zbl

[A2] Anderson M., Boundary regularity, uniqueness and non-uniqueness for AH Einstein metrics on 4-manifolds, Preprint | MR | Zbl

[AD] Andersson L., Dahl M., “Scalar curvature rigidity for asymptotically hyperbolic manifolds”, Ann. Global Anal. Geom., 16 (1998), 1–27 | DOI | MR | Zbl

[BO] Branson T., Orsted A., “Explicit functional determinants in four dimension”, Proc. Am. Math. Soc., 113 (1991), 669–682 | DOI | MR | Zbl

[CQY] Chang A., Qing J., Yang P., “On topology of conformally compact Einstein 4-manifolds”, Noncompact problems at the intersection of geometry, analysis, and topology, Proceedings of the conference on noncompact variational problems and general relativity held in honor of Haim Brezis and Felix Browder at Rutgers University (New Brunswick, NJ, USA, October 14–18, 2001), Contemp. Math., 350, eds. A. Bahri et al., Amer. Math. Soc., Providence, RI, 2004, 49–61 | MR | Zbl

[CGY1] Chang A., Gursky M., Yang P., “An equation of Monge-Ampere type in conformal geometry and 4-manifolds of positive Ricci curvature”, Ann. Math., 155:3 (2002), 711–789 | DOI

[CGY2] Chang A., Gursky M., Yang P., A conformally invariant sphere theorem in four dimension, Preprint, 2002

[CY] Chang A., Yang P., “Extremal metrics of zeta functional determinants on 4-manifolds”, Ann. Math., 142 (1995), 171–212 | DOI | MR | Zbl

[DHL] Djadli Z., Hebey E., Ledoux M., “Paneitz-type operators and applications”, Duke Math. J., 104:1 (2000), 129–169 | DOI | MR | Zbl

[DMA] Djadli Z., Malchiodi A., Ahmedou M., Prescribing a forth order conformal invariant on the standard sphere, Part II: Blowup analysis and application, Preprint, 2001 | MR | Zbl

[FG] Fefferman C., Graham C. R., “Conformal invariants”, Astérisque, 1985, 95–116 | MR | Zbl

[Gr] Graham C. R., “Volume and Area renormalizations for conformally compact Einstein metrics”, Proc. $19$th Winter School “Geometry and Physics” (Srni, 1999), Rend. Circ. Mat. Palermo, II Suppl., 63, 2000, 31–42 | MR | Zbl

[GJMS] Graham C. R., Jenne R., Mason L., Sparling G., “Conformally invariant powers of the Laplacian, I: existence”, J. Lond. Math. Soc., II Ser., 46:2 (1992), 557–565 | DOI | MR | Zbl

[GL] Graham C. R., Lee J., “Einstein metrics with prescribed conformal infinity on the ball”, Adv. Math., 87:2 (1991), 186–225 | DOI | MR | Zbl

[G1] Gursky M., “The principal eigenvalue of a conformally invariant differential operator, with an application to semilinear elliptic PDE, powers of the Laplacian, I: existence”, J. Lond. Math. Soc., II Ser., 46:2 (1992)

[G2] Gursky M., “The Weyl functional, deRham cohomology and Köhler–Einstein metrics”, Ann. Math., 148 (1998), 315–337 | DOI | MR | Zbl

[M] Margerin C., “A sharp characterization of the smooth 4-sphere in curvature forms”, Commun. Anal. Geom., 6:1 (1998), 21–65 | MR | Zbl

[P] Paneitz S., A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifold, Preprint, MIT Press Ser. Signal Process, Optimization Control, 1983

[Q] Qing J., “On the rigidity for conformally compact Einstein manifolds”, Int. Math. Res. Not., 2003, no. 21, 1141–1153 | DOI | MR | Zbl

[V] Viaclosky J., “Contact geometry and calculus of variations”, Duke Math. J., 101:2 (2000), 283–316 | DOI | MR

[XY] Xu X., Yang P., “On a fourth order equation in 3-D”, ESAIM Control Optim. Calc. Var., 8 (2002), 1029–1042 | DOI | MR | Zbl