Simple Coisotropic Caustics
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 2, Tome 2 (2003), pp. 45-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete proof of local classifications up to symplectomorphisms of simple stable pairs consisting of a Lagrangian submanifold and a coisotropic fibration is presented. This generalization of Arnold's classification of simple Lagrangian projections provides all discriminants of $A$, $B$, $C$, $D$, $E$, and F Weil groups.
@article{CMFD_2003_2_a1,
     author = {V. M. Zakalyukin},
     title = {Simple {Coisotropic} {Caustics}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {45--56},
     publisher = {mathdoc},
     volume = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2003_2_a1/}
}
TY  - JOUR
AU  - V. M. Zakalyukin
TI  - Simple Coisotropic Caustics
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2003
SP  - 45
EP  - 56
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2003_2_a1/
LA  - ru
ID  - CMFD_2003_2_a1
ER  - 
%0 Journal Article
%A V. M. Zakalyukin
%T Simple Coisotropic Caustics
%J Contemporary Mathematics. Fundamental Directions
%D 2003
%P 45-56
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2003_2_a1/
%G ru
%F CMFD_2003_2_a1
V. M. Zakalyukin. Simple Coisotropic Caustics. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 2, Tome 2 (2003), pp. 45-56. http://geodesic.mathdoc.fr/item/CMFD_2003_2_a1/

[1] Arnold V. I., “Normalnye formy funktsii vblizi vyrozhdennykh kriticheskikh tochek, $A_k$, $D_k$, $E_k$ gruppy Veilya i lagranzhevy osobennosti”, Funkts. analiz i ego prilozh., 6:4 (1972), 3–25 | MR

[2] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii 1, Nauka, M., 1982 | MR

[3] Givental A. B., “Osobye lagranzhevy mnogoobraziya i ikh lagranzhevy proektsii”, Itogi nauki i tekhn., ser. Sovrem. probl. mat., Noveishie dostizheniya, 33, VINITI, M., 1988, 55–112 | MR

[4] Zakalyukin V. M., Myasnichenko O. M., “Lagranzhevy osobennosti pri simaplekticheskoi reduktsii”, Funkts. analiz i ego prilozh., 32:1 (1998), 1–9 | MR | Zbl

[5] Roberts R. M., Zakalyukin V. M., “Ob osobykh lagranzhevykh mnogoobraziyakh”, Funkts. analiz i ego prilozh., 26:3 (1992), 28–34 | MR | Zbl

[6] Zakalyukin V. M., “Simple coisotropic projections and caustics”, Prog. Math., 2 (2001), 575–583 | MR