Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2003_2_a1, author = {V. M. Zakalyukin}, title = {Simple {Coisotropic} {Caustics}}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {45--56}, publisher = {mathdoc}, volume = {2}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2003_2_a1/} }
V. M. Zakalyukin. Simple Coisotropic Caustics. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 2, Tome 2 (2003), pp. 45-56. http://geodesic.mathdoc.fr/item/CMFD_2003_2_a1/
[1] Arnold V. I., “Normalnye formy funktsii vblizi vyrozhdennykh kriticheskikh tochek, $A_k$, $D_k$, $E_k$ gruppy Veilya i lagranzhevy osobennosti”, Funkts. analiz i ego prilozh., 6:4 (1972), 3–25 | MR
[2] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii 1, Nauka, M., 1982 | MR
[3] Givental A. B., “Osobye lagranzhevy mnogoobraziya i ikh lagranzhevy proektsii”, Itogi nauki i tekhn., ser. Sovrem. probl. mat., Noveishie dostizheniya, 33, VINITI, M., 1988, 55–112 | MR
[4] Zakalyukin V. M., Myasnichenko O. M., “Lagranzhevy osobennosti pri simaplekticheskoi reduktsii”, Funkts. analiz i ego prilozh., 32:1 (1998), 1–9 | MR | Zbl
[5] Roberts R. M., Zakalyukin V. M., “Ob osobykh lagranzhevykh mnogoobraziyakh”, Funkts. analiz i ego prilozh., 26:3 (1992), 28–34 | MR | Zbl
[6] Zakalyukin V. M., “Simple coisotropic projections and caustics”, Prog. Math., 2 (2001), 575–583 | MR