Equations of Advanced--Retarded Type and Solutions of Traveling-Wave Type for Infinite-Dimensional Dynamic Systems
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 1, Tome 1 (2003), pp. 18-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we study infinite-dimensional dynamic systems with the Frenkel–Kontorova potentials. For such systems we describe their traveling-wave-type solutions, which are solutions for the corresponding boundary-value problem with nonlocal conditions. Describing the mentioned solutions is equivalent to describing the space of solutions for a functional differential equation that can be canonically derived from the original dynamic system. The stability of traveling-wave-type solutions is also investigated.
@article{CMFD_2003_1_a1,
     author = {L. A. Beklaryan},
     title = {Equations of {Advanced--Retarded} {Type} and {Solutions} of {Traveling-Wave} {Type} for {Infinite-Dimensional} {Dynamic} {Systems}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {18--29},
     publisher = {mathdoc},
     volume = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2003_1_a1/}
}
TY  - JOUR
AU  - L. A. Beklaryan
TI  - Equations of Advanced--Retarded Type and Solutions of Traveling-Wave Type for Infinite-Dimensional Dynamic Systems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2003
SP  - 18
EP  - 29
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2003_1_a1/
LA  - ru
ID  - CMFD_2003_1_a1
ER  - 
%0 Journal Article
%A L. A. Beklaryan
%T Equations of Advanced--Retarded Type and Solutions of Traveling-Wave Type for Infinite-Dimensional Dynamic Systems
%J Contemporary Mathematics. Fundamental Directions
%D 2003
%P 18-29
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2003_1_a1/
%G ru
%F CMFD_2003_1_a1
L. A. Beklaryan. Equations of Advanced--Retarded Type and Solutions of Traveling-Wave Type for Infinite-Dimensional Dynamic Systems. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 1, Tome 1 (2003), pp. 18-29. http://geodesic.mathdoc.fr/item/CMFD_2003_1_a1/

[1] Beklaryan L. A., Vvedenie v kachestvennuyu teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom i ikh prilozheniya, TsEMI RAN, M., 1996

[2] Beklaryan L. A., “Gruppovye osobennosti differentsialnykh uravnenii s otklonyayuschimsya argumentom i svyazannye s nimi metricheskie invarianty”, Itogi nauki i tekhn., 67, VINITI, M., 1999, 161–182

[3] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1979 | MR

[4] Pustylnikov L. D., “Beskonechnomernye nelineinye obyknovennye differentsialnye uravneniya i teoriya KAM”, UMN, 52:3 (315) (1997), 105–160 | MR

[5] Frenkel Ya. I., Kontorova T. A., “O teorii plasticheskoi deformatsii i dvoistvennosti”, ZhETF, 8 (1938), 89–97

[6] Treshev D. V., Travelling waves in FPU lattices, Preprint, 2002