Transcendental first integrals of dynamical systems on the tangent bundle to the sphere
Contemporary Mathematics and Its Applications, Tome 100 (2016), pp. 58-75
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we examine the existence of transcendental first integrals for some classes of systems with symmetries. We obtain sufficient conditions of existence of first integrals of second-order nonautonomous homogeneous systems that are transcendental functions (in the sense of the theory of elementary functions and in the sense of complex analysis) expressed as finite combinations of elementary functions.
@article{CMA_2016_100_a5,
author = {M. V. Shamolin},
title = {Transcendental first integrals of dynamical systems on the tangent bundle to the sphere},
journal = {Contemporary Mathematics and Its Applications},
pages = {58--75},
publisher = {mathdoc},
volume = {100},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMA_2016_100_a5/}
}
TY - JOUR AU - M. V. Shamolin TI - Transcendental first integrals of dynamical systems on the tangent bundle to the sphere JO - Contemporary Mathematics and Its Applications PY - 2016 SP - 58 EP - 75 VL - 100 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMA_2016_100_a5/ LA - ru ID - CMA_2016_100_a5 ER -
M. V. Shamolin. Transcendental first integrals of dynamical systems on the tangent bundle to the sphere. Contemporary Mathematics and Its Applications, Tome 100 (2016), pp. 58-75. http://geodesic.mathdoc.fr/item/CMA_2016_100_a5/