On stabilization of potential systems by circular forces
Contemporary Mathematics and Its Applications, Tome 98 (2015), pp. 17-21
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider a linear potential system possessing an arbitrary number of negative stability coefficient and solve the problem on stabilization (until a stable state) of a nonstable potential system by circular forces. We obtain stability conditions in terms of the initial system that generalize results obtained earlier for the case of a single negative stability coefficient. We also examine the action of dissipative forces.
@article{CMA_2015_98_a2,
author = {T. V. Muratova and S. A. Agafonov},
title = {On stabilization of potential systems by circular forces},
journal = {Contemporary Mathematics and Its Applications},
pages = {17--21},
publisher = {mathdoc},
volume = {98},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMA_2015_98_a2/}
}
T. V. Muratova; S. A. Agafonov. On stabilization of potential systems by circular forces. Contemporary Mathematics and Its Applications, Tome 98 (2015), pp. 17-21. http://geodesic.mathdoc.fr/item/CMA_2015_98_a2/