On the extendability of locally defined isometries of a pseudo-Riemannian manifold
Contemporary Mathematics and Its Applications, Tome 96 (2015), pp. 98-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\eta$ be a stationary subalgebra of the Lie algebra $\zeta$ of all Killing vector fields on a pseudo-Riemannian analytic manifold, $G$ be a simply connected Lie group generated by the algebra $\zeta $, and $H$ be its subgroup generated by the subalgebra $\eta$. Then the subgroup $H$ is closed in $G$.
@article{CMA_2015_96_a5,
     author = {V. A. Popov},
     title = {On the extendability of locally defined isometries of a {pseudo-Riemannian} manifold},
     journal = {Contemporary Mathematics and Its Applications},
     pages = {98--101},
     publisher = {mathdoc},
     volume = {96},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMA_2015_96_a5/}
}
TY  - JOUR
AU  - V. A. Popov
TI  - On the extendability of locally defined isometries of a pseudo-Riemannian manifold
JO  - Contemporary Mathematics and Its Applications
PY  - 2015
SP  - 98
EP  - 101
VL  - 96
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMA_2015_96_a5/
LA  - ru
ID  - CMA_2015_96_a5
ER  - 
%0 Journal Article
%A V. A. Popov
%T On the extendability of locally defined isometries of a pseudo-Riemannian manifold
%J Contemporary Mathematics and Its Applications
%D 2015
%P 98-101
%V 96
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMA_2015_96_a5/
%G ru
%F CMA_2015_96_a5
V. A. Popov. On the extendability of locally defined isometries of a pseudo-Riemannian manifold. Contemporary Mathematics and Its Applications, Tome 96 (2015), pp. 98-101. http://geodesic.mathdoc.fr/item/CMA_2015_96_a5/