Geodesic mappings and their generalizations
Contemporary Mathematics and Its Applications, Tome 96 (2015), pp. 82-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to further study of the theory of geodesic mappings and their generalizations, including conformal, holomorphically projective, $F$-planar, and almost geodesic mappings of affinely connected spaces.
@article{CMA_2015_96_a4,
     author = {J. Mike\v{s} and V. E. Berezovskii and E. Stepanova and H. Chud\'a},
     title = {Geodesic mappings and their generalizations},
     journal = {Contemporary Mathematics and Its Applications},
     pages = {82--97},
     publisher = {mathdoc},
     volume = {96},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMA_2015_96_a4/}
}
TY  - JOUR
AU  - J. Mikeš
AU  - V. E. Berezovskii
AU  - E. Stepanova
AU  - H. Chudá
TI  - Geodesic mappings and their generalizations
JO  - Contemporary Mathematics and Its Applications
PY  - 2015
SP  - 82
EP  - 97
VL  - 96
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMA_2015_96_a4/
LA  - ru
ID  - CMA_2015_96_a4
ER  - 
%0 Journal Article
%A J. Mikeš
%A V. E. Berezovskii
%A E. Stepanova
%A H. Chudá
%T Geodesic mappings and their generalizations
%J Contemporary Mathematics and Its Applications
%D 2015
%P 82-97
%V 96
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMA_2015_96_a4/
%G ru
%F CMA_2015_96_a4
J. Mikeš; V. E. Berezovskii; E. Stepanova; H. Chudá. Geodesic mappings and their generalizations. Contemporary Mathematics and Its Applications, Tome 96 (2015), pp. 82-97. http://geodesic.mathdoc.fr/item/CMA_2015_96_a4/