Local structure of Vaisman--Gray manifolds
Contemporary Mathematics and Its Applications, Tome 96 (2015), pp. 71-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce the notion of a mapping of adjoint $G$-structures of almost Hermitian manifolds and obtain relations between components of the fundamental tensor fields of an initial almost Hermitian manifold and the conformally transformed manifold. These formulas are applied to the study of the class of Vaisman–Gray manifolds. We prove that in dimension $>4$ the class of Vaisman–Gray manifolds coincides with the class of locally conformally nearly Kählerian manifolds.
@article{CMA_2015_96_a3,
     author = {L. A. Ignatochkina},
     title = {Local structure of {Vaisman--Gray} manifolds},
     journal = {Contemporary Mathematics and Its Applications},
     pages = {71--81},
     publisher = {mathdoc},
     volume = {96},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMA_2015_96_a3/}
}
TY  - JOUR
AU  - L. A. Ignatochkina
TI  - Local structure of Vaisman--Gray manifolds
JO  - Contemporary Mathematics and Its Applications
PY  - 2015
SP  - 71
EP  - 81
VL  - 96
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMA_2015_96_a3/
LA  - ru
ID  - CMA_2015_96_a3
ER  - 
%0 Journal Article
%A L. A. Ignatochkina
%T Local structure of Vaisman--Gray manifolds
%J Contemporary Mathematics and Its Applications
%D 2015
%P 71-81
%V 96
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMA_2015_96_a3/
%G ru
%F CMA_2015_96_a3
L. A. Ignatochkina. Local structure of Vaisman--Gray manifolds. Contemporary Mathematics and Its Applications, Tome 96 (2015), pp. 71-81. http://geodesic.mathdoc.fr/item/CMA_2015_96_a3/