On the solution of the Goursat problem for the Toda system associated with the Lie algebra $C_2$
Contemporary Mathematics and Its Applications, Tome 88 (2013), pp. 60-67
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we propose a method for the construction of the solution of the Goursat problem for the Toda system associated with the Lie algebra $C_2$ based on Hamiltonian reduction of the Wess–Zumino model.
@article{CMA_2013_88_a4,
author = {S. P. Babenko and A. V. Bad'in and A. V. Ovchinnikov},
title = {On the solution of the {Goursat} problem for the {Toda} system associated with the {Lie} algebra $C_2$},
journal = {Contemporary Mathematics and Its Applications},
pages = {60--67},
year = {2013},
volume = {88},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMA_2013_88_a4/}
}
TY - JOUR AU - S. P. Babenko AU - A. V. Bad'in AU - A. V. Ovchinnikov TI - On the solution of the Goursat problem for the Toda system associated with the Lie algebra $C_2$ JO - Contemporary Mathematics and Its Applications PY - 2013 SP - 60 EP - 67 VL - 88 UR - http://geodesic.mathdoc.fr/item/CMA_2013_88_a4/ LA - ru ID - CMA_2013_88_a4 ER -
%0 Journal Article %A S. P. Babenko %A A. V. Bad'in %A A. V. Ovchinnikov %T On the solution of the Goursat problem for the Toda system associated with the Lie algebra $C_2$ %J Contemporary Mathematics and Its Applications %D 2013 %P 60-67 %V 88 %U http://geodesic.mathdoc.fr/item/CMA_2013_88_a4/ %G ru %F CMA_2013_88_a4
S. P. Babenko; A. V. Bad'in; A. V. Ovchinnikov. On the solution of the Goursat problem for the Toda system associated with the Lie algebra $C_2$. Contemporary Mathematics and Its Applications, Tome 88 (2013), pp. 60-67. http://geodesic.mathdoc.fr/item/CMA_2013_88_a4/