On the solution of the Goursat problem for the Toda system associated with the Lie algebra $C_2$
Contemporary Mathematics and Its Applications, Tome 88 (2013), pp. 60-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose a method for the construction of the solution of the Goursat problem for the Toda system associated with the Lie algebra $C_2$ based on Hamiltonian reduction of the Wess–Zumino model.
@article{CMA_2013_88_a4,
     author = {S. P. Babenko and A. V. Bad'in and A. V. Ovchinnikov},
     title = {On the solution of the {Goursat} problem for the {Toda} system associated with the {Lie} algebra $C_2$},
     journal = {Contemporary Mathematics and Its Applications},
     pages = {60--67},
     publisher = {mathdoc},
     volume = {88},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMA_2013_88_a4/}
}
TY  - JOUR
AU  - S. P. Babenko
AU  - A. V. Bad'in
AU  - A. V. Ovchinnikov
TI  - On the solution of the Goursat problem for the Toda system associated with the Lie algebra $C_2$
JO  - Contemporary Mathematics and Its Applications
PY  - 2013
SP  - 60
EP  - 67
VL  - 88
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMA_2013_88_a4/
LA  - ru
ID  - CMA_2013_88_a4
ER  - 
%0 Journal Article
%A S. P. Babenko
%A A. V. Bad'in
%A A. V. Ovchinnikov
%T On the solution of the Goursat problem for the Toda system associated with the Lie algebra $C_2$
%J Contemporary Mathematics and Its Applications
%D 2013
%P 60-67
%V 88
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMA_2013_88_a4/
%G ru
%F CMA_2013_88_a4
S. P. Babenko; A. V. Bad'in; A. V. Ovchinnikov. On the solution of the Goursat problem for the Toda system associated with the Lie algebra $C_2$. Contemporary Mathematics and Its Applications, Tome 88 (2013), pp. 60-67. http://geodesic.mathdoc.fr/item/CMA_2013_88_a4/