Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2024_9_4_a4, author = {A. I. Kozhanov and G. R. Ashurova}, title = {Third-order differential equations with multiple characteristics: degeneration and unknown external influence}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {585--595}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a4/} }
TY - JOUR AU - A. I. Kozhanov AU - G. R. Ashurova TI - Third-order differential equations with multiple characteristics: degeneration and unknown external influence JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2024 SP - 585 EP - 595 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a4/ LA - ru ID - CHFMJ_2024_9_4_a4 ER -
%0 Journal Article %A A. I. Kozhanov %A G. R. Ashurova %T Third-order differential equations with multiple characteristics: degeneration and unknown external influence %J Čelâbinskij fiziko-matematičeskij žurnal %D 2024 %P 585-595 %V 9 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a4/ %G ru %F CHFMJ_2024_9_4_a4
A. I. Kozhanov; G. R. Ashurova. Third-order differential equations with multiple characteristics: degeneration and unknown external influence. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 4, pp. 585-595. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a4/
[1] Romanov V.G., Inverse Problems of Mathematical Physics, BRILL, Utrecht, 1987
[2] Anikonov Yu. E., Bubnov B. A., Erokhin G. N., Inverse and Ill-Posed Sources Problems, VSP, Utrecht, 1997
[3] Kozhanov A. I., Composite Type Equations and Inverse Problems, VSP, Utrecht, 1999
[4] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York, 1999
[5] Anikonov Yu. E., Inverse Problems for Kinetic and Other Evolution Equation, VSP, Utrecht, 2001
[6] Belov Yu. Ya., Inverse Problems for Partial Differential Equations, VSP, Utrecht, 2002
[7] Ivanchov M., Inverse Problems for Equations of Parabolic Type, WNTI Publ., Lviv, 2003
[8] Lavrentiev M. M., Inverse Problems of Mathematical Physics, VSP, Utrecht, 2003
[9] Isakov V., An Inverse Problems for Partial Differential Equations, Springer, New York, 2006
[10] Kabanihin S.I., Inverse and ill-posed problems, Siberian book publishing house, Novosibirsk, 2009 (In Russ.)
[11] Lesnic D., Inverse Problems with Applications in Science and Engineering, Taylor and Frencis Group, New York, 2022
[12] Ablabekov B., Inverse problems for third-order differential equations, LAP Lambert Academic Publ., 2013 (In Russ.)
[13] Kozhanov A.I., “Inverse problems for differential equations with multiple characteristics: a case of unknown element depending on time”, Reports of Adyghe (Circassian) International Academy of Science, 8:1 (2005), 38–49 (In Russ.)
[14] Fedorov V. E., Ivanova N. D., “Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel”, Discrete and Continuous Dynamical Systems — S, 9:3 (2016), 687–696
[15] Fedorov V. E., Ivanova N. D., “Inverse problems for a class of linear Sobolev type equations with overdetermination on the kernel of operator at the derivative”, Journal of Inverse and Ill-posed Problems, 28:1 (2020), 53–61
[16] Kozhanov A. I., Abylkayrov U. U., Ashurova G. R., “Inverse problems of parameter recovery in differential equation with multiple characteristics”, KazNU Bulletin. Mathematics, Mechanics, Computer Science Series, 113:1 (2022), 3–16
[17] Faminskij A.V., Direct and inverse problems for quasilinear evolution equations of an odd order, Scientific workshop on differential and functional-differential equations. 14 May 2024. Moscow } (In Russ.) {\tt https://www.youtube.com/watch?v=dTKHDZGWfO4
[18] Egorov I.E., Fedorov V.E., Nonclassical mathematical physics equations of higher order, Computational Center of SB RAS, Novosibirsk, 1995 (In Russ.)
[19] Kozhanov A.I., Zikirov O.S., “Boundary problems for twice degenerate differential equations with multiple characteristics”, Mathematical Notes of NEFU, 25:4 (2018), 34–44
[20] Kozhanov A.I., Matsievskaya E.E., “Degenerate parabolic equations with variable direction of evolution”, Siberian Electronic Mathematical Reports, 16 (2019), 718–731 (In Russ.)
[21] Ladyzhenskaya O.A., Ural'tseva N.N., Linear and Quasi-linear Elliptic Equations, Academic Press, New York, 1968
[22] Triebel H., Interpolation Theory. Functional Spaces. Differential Operators, Veb Deutsher. Verl. Wiss., Berlin, 1978
[23] Sobolev S.L., Some Applications of Functional Analysis in Mathematical Physics, American Mathematical Soc., Providence, 2008
[24] Dzhenaliev M.T., To theory of linear boundary problems for loaded differential equations, Institute of Theoretical and Applied Mathematics, Almaty, 1995 (In Russ.)
[25] Nakhushev A.M., Loaded equations and their applications, Nauka, Moscow, 2012 (In Russ.)
[26] Ladyzhenskaya O.A., Solonnikov V.A., Ural'tseva N.N., Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, Providence, 1968
[27] Yakubov S.I., Linear differential operator equations and their applications, Elm, Baku, 1985 (In Russ.)
[28] Trenogin V.A., Functional analysis, Nauka, Moscow, 1980 (In Russ.)