Research on controllability issues for equations with the Hilfer derivative and with bounded operators in Banach spaces
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 4, pp. 552-560.

Voir la notice de l'article provenant de la source Math-Net.Ru

The issues of approximate controllability of systems described by evolutionary equations in Banach spaces resolved with respect to the Hilfer fractional derivative are investigated. The operator at the unknown function is assumed to be bounded. Criteria of controllability for fixed and for free time is obtained. The abstract result is used when considering a class of distributed control systems of fractional order in time.
Keywords: Hilfer derivative, fractional order equation, Cauchy type problem, distributed control system, approximate controllability.
@article{CHFMJ_2024_9_4_a1,
     author = {D. M. Gordievskikh and V. E. Fedorov},
     title = {Research on controllability issues for equations with the {Hilfer} derivative and with bounded operators in {Banach} spaces},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {552--560},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a1/}
}
TY  - JOUR
AU  - D. M. Gordievskikh
AU  - V. E. Fedorov
TI  - Research on controllability issues for equations with the Hilfer derivative and with bounded operators in Banach spaces
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2024
SP  - 552
EP  - 560
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a1/
LA  - ru
ID  - CHFMJ_2024_9_4_a1
ER  - 
%0 Journal Article
%A D. M. Gordievskikh
%A V. E. Fedorov
%T Research on controllability issues for equations with the Hilfer derivative and with bounded operators in Banach spaces
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 552-560
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a1/
%G ru
%F CHFMJ_2024_9_4_a1
D. M. Gordievskikh; V. E. Fedorov. Research on controllability issues for equations with the Hilfer derivative and with bounded operators in Banach spaces. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 4, pp. 552-560. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a1/

[1] Samko S.G., Kilbas A.A., Marichev O.I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science, Philadelphia, 1993

[2] Nakhushev A.M., Fractional calculus and its applications, Fizmatlit Publ., Moscow, 2003 (In Russ.)

[3] Pskhu A.V., Partial differential equations of a fractional order, Nauka Publ., Moscow, 2005 (In Russ.)

[4] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier Science Publishing, Amsterdam; Boston; Heidelberg, 2006

[5] Hilfer R., Applications of Fractional Calculus in Physics, WSPC, Singapore, 2000

[6] Karthikeyan K., Karthikeyan P., Patanarapeelert N., Sitthiwirattham T., “Mild solutions for impulsive integro-differential equations involving Hilfer fractional derivative with almost sectorial operators”, Axioms, 10:4 (2021), 313

[7] Volkova A.R., Fedorov V.E., Gordievskikh D.M., “On solvability of some classes of equations with the Hilfer derivative in Banach spaces”, Chelyabinsk Physical and Mathematical Journal, 7:1 (2022), 11–19

[8] Naveen S., Srilekha R., Suganya R. Parthiban V., “Controllability of damped dynamical systems modelled by Hilfer fractional derivatives”, Journal of Taibah University for Science, 16:1 (2022), 1254–1263

[9] Yuldashev T. K., Ergashev T. G., Abduvahobov T. A., “Nonlinear system of impulsive integro-differential equations with Hilfer fractional operator and mixed maxima”, Chelyabinsk Physical and Mathematical Journal, 7:3 (2022), 312–325

[10] Moumen A., Alsinai A., Shafqat R., Albasheir N. A., Alhagyan M., Gargouri A., Almazah M. M. A., “Controllability of fractional stochastic evolution inclusion via Hilfer derivative of fixed point theory”, AIMS Mathematics, 8:9 (2023), 19892–19912

[11] Fedorov V., Apakov Yu., Skorynin A., “Analytic resolving families of operators for linear equations with Hilfer derivative”, Journal of Mathematical Sciences, 277:3 (2023), 385–402

[12] Fedorov V. E., Skorynin A. S., “A class of quasilinear equations with Hilfer derivatives”, Mathematical Notes, 115:5 (2024), 817–828

[13] Krasovskii N.N., Theory of motion control. Linear systems, Nauka Publ., Moscow, 1968 (In Russ.)

[14] Kalman R. E., Ho Y. C., Narendra K. S., “Controllability of linear dynamical systems”, Contributions to Differential Equations, 1:2 (1963), 189–213

[15] Kurzhanskii A.B., “To controllability in Banach spaces”, Differential equations, 5:9 (1969), 1715–1718 (In Russ.)

[16] Triggiani R., “Controllability and observability in Banach space with bounded operators”, SIAM Journal on Control, 13:2 (1975), 462–491

[17] Curtain R. F., “The Salamon–Weiss class of well-posed infinite dimensional linear systems: a survey”, IMA Journal of Mathematical Control and Information, 14 (1997), 207–223

[18] Sholokhovich F.A., “On controllability of linear dynamical systems”, News of Ural State University, 10:1 (1998), 103–126 (In Russ.)

[19] Gordievskikh D.M., Fedorov V.E., Turov M.M., “Infinite-dimensional and finite-dimensional $\varepsilon$-controllability of a class of degenerate evolutionary equations of fractional order”, Chelyabinsk Physical and Mathematical Journal, 3:1 (2018), 5–26

[20] Fedorov V. E., Gordievskikh D. M., “Approximate controllability of strongly degenerate fractional order system of distributed control”, 17th IFAC Workshop on Control Applications of Optimization CAO 2018 (Yekaterinburg, Russia, 15-19 October 2018), IFAC-PapersOnLine, 51, no. 32, 2018, 675–680

[21] Fedorov V.E., Gordievskikh D.M., Baleanu D., Taş K., “Criterion of approximate controllability of a class of degenerate distributed systems with the Riemann–Liouville derivative”, Mathematical Notes of NEFU, 26:2 (2019), 41–59

[22] Baleanu D., Fedorov V. E., Gordievskikh D. M., Taş K., “Approximate controllability of infinite-dimensional degenerate fractional order systems in the sectorial case”, Mathematics, 7:8 (2019), 735

[23] Avilovich A.S., Gordievskikh D.M., Fedorov V.E., “Issues of unique solvability and approximate controllability for linear fractional order equations with a Holderian right-hand side”, Chelyabinsk Physical and Mathematical Journal, 5:1 (2020), 5–21

[24] Fedorov V. E., Gordievskikh D. M., Filin N. V., “On approximate controllability of a class of degenerate fractional order distributed systems”, Journal of Physics: Conference Series, 1847 (2021), 012017

[25] Debbouche A., Vadivoo B. S., Fedorov V. E., Antonov V., “Controllability criteria for nonlinear impulsive fractional differential systems with distributed delays in controls”, Mathematical and Computational Applications, 28:1 (2023), 13

[26] Dzhrbashyan M.M., Nersesyan A.B., “Fractional derivatives and the Cauchy problem for differential equations of fractional order”, News of Academy of Sciences of Armenian SSR. Mathematics, 3 (1968), 3–28 (In Russ.)