System of impulsive differential equations with a product of two nonlinear functions and nonlinear boundary conditions
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 4, pp. 539-551.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonlocal two-point boundary value problem for pulse systems of ordinary differential equations of the first order with nonlinear conditions, including derivatives of an unknown vector function, is investigated. The system of differential equations contains the product of two nonlinear vector functions, for each of which the Lipschitz condition is satisfied. The existence, uniqueness and continuous dependence of the solution on the given functions are proved. The problem is reduced to a system of nonlinear functional integral equations in a Banach space. The method of successive approximations in combination with the method of contraction mappings is applied in proving the existence and uniqueness of a solution of nonlinear systems of functional integral equations.
Keywords: nonlocal problem, impulse system, nonlinear boundary conditions, product of two nonlinear functions, existence and uniqueness of a solution, continuous dependence of a solution on given functions.
@article{CHFMJ_2024_9_4_a0,
     author = {T. A. Abduvahobov},
     title = {System of impulsive differential equations with a product of two nonlinear functions and nonlinear boundary conditions},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {539--551},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a0/}
}
TY  - JOUR
AU  - T. A. Abduvahobov
TI  - System of impulsive differential equations with a product of two nonlinear functions and nonlinear boundary conditions
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2024
SP  - 539
EP  - 551
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a0/
LA  - ru
ID  - CHFMJ_2024_9_4_a0
ER  - 
%0 Journal Article
%A T. A. Abduvahobov
%T System of impulsive differential equations with a product of two nonlinear functions and nonlinear boundary conditions
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 539-551
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a0/
%G ru
%F CHFMJ_2024_9_4_a0
T. A. Abduvahobov. System of impulsive differential equations with a product of two nonlinear functions and nonlinear boundary conditions. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 4, pp. 539-551. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_4_a0/

[1] Halanay A., Wexler D., Teoria calitativa a sistemelor cu impulsuri, Editura Academiei Republicii Socialiste Romania, Bucuresti, 1968

[2] Lakshmikantham V., Bainov D. D., Simeonov P. S., Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989

[3] Samoilenko A. M., Perestyk N. A., Impulsive Differential Equations, World Scientific, Singapore, 1995

[4] Benchohra M., Henderson J., Ntouyas S.K., Impulsive Differential Equations and Inclusions, Hindawi Publ., New York, 2006 | MR | Zbl

[5] Perestyk N. A., Plotnikov V. A., Samoilenko A. M., Skripnik N. V., Differential Equations with Impulse Effect: Multivalued Right-hand Sides with Discontinuities, Walter de Gruyter, Berlin, 2011

[6] Boichuk A. A., Samoilenko A. M., Generalized Inverse Operators and Fredholm Boundary-Value Problems, Walter de Gruyter, Berlin; Boston, 2016

[7] Agarwal R. P., Benchohra M., Salimani B. A., “Existence results for differential equations with fractional order and impulses”, Memoirs on Differential Equations and Mathematical Physics, 44 (2008), 1–21

[8] Anguraj A., Arjunan M. M., “Existence and uniqueness of mild and classical solutions of impulsive evolution equations”, Electronic Journal of Differential Equations, 2005:111 (2005)

[9] Ashyralyev A., Sharifov Y. A., “Existence and uniqueness of solutions for nonlinear impulsive differential equations with two-point and integral boundary conditions”, Advances in Difference Equations, 2013:173 (2013)

[10] Bai Ch., Yang D., “Existence of solutions for second-order nonlinear impulsive differential equations with periodic boundary value conditions”, Boundary Value Problems, 2007 (2007), 41589

[11] Benchohra M., Salimani B. A., “Existence and uniqueness of solutions to impulsive fractional differential equations”, Electronic Journal of Differential Equations, 2009:10 (2009)

[12] Bin L., Xinzhi L., Xiaoxin L., “Robust global exponential stability of uncertain impulsive systems”, Acta Mathematika Scientia, 25:1 (2005), 161–169

[13] Catlla J., Schaeffer D. G., Witelski Th. P., Monson E. E., Lin A. L., “On spiking models for synaptic activity and impulsive differential equations”, SIAM Review, 50:3 (2008), 553–569

[14] Gao Zh., Yang L., Liu G., “Existence and uniqueness of solution of impulsive fractional integro-differential equations with nonlocal conditions”, Applied Mathematics, 4:6 (2013), 859–863

[15] Ji Sh., Wen Sh., “Nonlocal Cauchy problem for impulsive differential equations in Banach spaces”, International Journal of Nonlinear Science, 10:1 (2010), 88–95

[16] Li M., Han M., “Existence for neutral impulsive functional differential equations with nonlocal conditions”, Indagationes Mathematicae, 20:3 (2009), 435–451

[17] Mardanov M. J., Sharifov Ya. A., Habib M. H., “Existence and uniqueness of solutions for first-order nonlinear differential equations with two-point and integral boundary conditions”, Electronic Journal of Differential Equations, 2014:259 (2014)

[18] Yuldashev T. K., Ergashev T. G., Abduvahobov T. A., “Nonlinear system of impulsive integro-differential equations with Hilfer fractional operator and mixed maxima”, Cheliabinsk Physical and Mathematical Journal, 7:3 (2022), 312–325

[19] Yuldashev T. K., Saburov Kh. Kh., Abduvahobov T. A., “Nonlocal problem for a nonlinear system of fractional order impulsive integro-differential equationswith maxima”, Cheliabinsk Physical and Mathematical Journal, 7:1 (2022), 113–122

[20] Yuldashev T. K., Fayziev A. K., “On a nonlinear impulsive system of integro-differential equations with degenerate kernel and maxima”, Nanosystems: Physics. Chemistry. Mathematics, 13:1 (2022), 36–44

[21] Yuldashev T. K., Fayziyev A. K., “Integral condition with nonlinear kernel for an impulsive system of differential equations with maxima and redefinition vector”, Lobachevskii Journal of Mathematics, 43:8 (2022), 2332–2340

[22] Yuldashev T. K., “Nonlinear optimal control of thermal processes in a nonlinear inverse problem”, Lobachevskii Journal of Mathematics, 41:1 (2020), 124–136