Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2024_9_2_a14, author = {N. N. Fedorova}, title = {Temperature factor effect on pulsating hydrogen combustion in a high-speed air flow}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {287--298}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a14/} }
TY - JOUR AU - N. N. Fedorova TI - Temperature factor effect on pulsating hydrogen combustion in a high-speed air flow JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2024 SP - 287 EP - 298 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a14/ LA - ru ID - CHFMJ_2024_9_2_a14 ER -
N. N. Fedorova. Temperature factor effect on pulsating hydrogen combustion in a high-speed air flow. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 2, pp. 287-298. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a14/
[1] Liberman M. A., Combustion Physics: Flames, Detonations, Explosions, Astrophysical Combustion and Inertial Confinement Fusion, Springer-Nature, 2021
[2] Lieuwen T. C., Unsteady Combustor Physics, Cambridge University Press, Cambridge, 2021 | MR | Zbl
[3] Raushenbach B.V., Oscilating Combustion, Fizmatgiz Publ., Moscow, 1967 (In Russ.)
[4] Culick F. E. C., “Combustion instabilities in propulsion systems”, Unsteady Combustion, eds. F. E. C. Culick, M. V. Heitor and J. H. Whitelaw, Kluwer, Dordrecht, 1996, 173–241 | DOI
[5] Larionov V.M., Zaripov R.G., Gas self-oscillations in installations with combustion, Kazan' State Technical University Publ., Kazan', 2003 (In Russ.)
[6] Perfil'ev A.S., Sultanov A.E., Gerasimenko S.Yu., “Conditions for the high-amplitude low-frequency vibrations occurrence of the launch vehicle body, reducing the propulsion system reliability”, News of Tula State University. Technical science, 2018, no. 7, 391–399 (In Russ.)
[7] Glasunov A. A., Eremin I. V., Zhil'tsov K. N., et al., “Numerical investigation of the pressure pulsation magnitude and natural aeroacoustic frequencies in the combustion chambers with a charge of a complex shape”, Tomsk State University Journal of Mathematics and Mechanics, 2018, no. 53, 59–72 | DOI
[8] Ma F., Li J., Yang V., Lin K.-C., Jackson T., “Thermoacoustic flow instability in a scramjet combustor”, AIAA Paper, 2005, no. 2005-3824
[9] Lin K.-C., Jackson K., Behdadnia R., Jackson T. A., Ma F., Yang V., “Acoustic characterization of an ethylene-fueled scramjet combustor with a cavity flameholder”, Journal of Propulsion and Power, 26 (2010), 1161–1169 | DOI
[10] Sun M. B., Gong C., Zhang S. P., Liang J. H., Liu W. D., Wang Z. G., “Spark ignition process in a scramjet combustor fueled by hydrogen and equipped with multi-cavities at Mach 4 flight condition”, Experimental Thermal and Fluid Science, 43 (2012), 90–96 | DOI
[11] Ouyang H., Liu W., Sun M., “The large-amplitude combustion oscillation in a single-side expansion scramjet combustor”, Acta Astronautica, 117 (2015), 90–98 | DOI
[12] Nakaya S., Yamana H., Tsue M., “Experimental investigation of ethylene$\/$air combustion instability in a model scramjet combustor using image-based methods”, Proceedings of the Combustion Institute, 38 (2021), 3869–3880 | DOI
[13] Choi J.-Y., Ma F., Yang V., “Combustion oscillations in a scramjet engine combustor with transverse fuel injection”, Proceedings of the Combustion Institute, 30 (2005), 2851–2858 | DOI
[14] Li J., Ma F., Yang V., Lin K.-C., Jackson T., “A comprehensive study of combustion oscillations in a hydrocarbon-fueled scramjet engine”, AIAA Paper, 2007, no. 2007-836
[15] Wang H., Wang Z., Sun M., Qin N., “Large-eddy/Reynolds-averaged Navier — Stokes simulation of combustion oscillations in a cavity-based supersonic combustor”, International Journal of Hydrogen Energy, 38 (2013), 5918–5927 | DOI
[16] Vlasenko V. V., Sabelnikov V. A., Molev S. S., Voloshchenko O. V., Ivankin M. A., Frolov S. M., “Transient combustion phenomena in high-speed flows in ducts”, Shock Waves, 30 (2020), 245–261 | DOI
[17] Jeong S.-M., Han H.-S., Sung B.-K., Lee E. S., Choi J., “Numerical simulation of combustion instability in a direct-connect supersonic combustor”, AIAA Paper, 2021, no. 2021–3535
[18] Liu O ., Kang K., Do H., “Inlet buzz phenomenon driven by flow choking in high-enthalpy Mach 4.5 flows using circular scramjet models”, Acta Astronautica, 193 (2022), 406–417 | DOI
[19] Jeong S.-M., Lee J. H., Choi J.-Y., “Numerical investigation of low-frequency instability and frequency shifting in a scramjet combustor”, Proceedings of the Combustion Institute, 39 (2023), 3107–3116 | DOI
[20] Wang T., Wang Z., Sun M. Li F., Huang Y., “Combustion oscillations in scramjet combustor with different fuel injection schemes”, AIAA Journal, 61 (2023), 2591–2600 | DOI
[21] Curran D. R., Wheatley V., Smart M. K., “The effect of wall and fuel temperature in a Mach 6 scramjet engine”, Proceedings of 22nd Australasian Fluid Mechanics Conference AFMC2020 (Brisbane, Australia, 7–10 December 2020), eds. H. Chanson and R. Brown, University of Queensland, 2020
[22] Aref'ev K.Yu., Kruchkov S.V., “Study of the combustion process of a hydrogen-air mixture in a channel of variable cross-section at different temperature levels of the flow path wall”, Problems of mechanics: theory, experiment and new technologies, Abstracts of reports of the XV All-Russian School-Conference of Young Scientists (February 25–March 5, 2021, Novosibirsk — Sheregesh), Avtograf Publ., Novosibirsk, 2021, 13–14 (In Russ.) | MR
[23] Mejia D., Selle L., Bazile R., Poinsot T., “Wall-temperature effects on flame response to acoustic oscillations”, Proceedings of the Combustion Institute, 35:3 (2015), 3201–3208 | DOI
[24] Fedorova N.N., Goldfeld M.A., Pickalov V.V., “Investigation of oscillation modes in a high-speed flow with heat supply. II. Numerical simulation”, Combustion, Explosion and Shock Waves, 58 (2022), 546–554 | DOI | DOI
[25] Goldfeld M.A., “Processes of fuel self-ignition and flame stabilization with transverse hydrogen fuel injection into a supersonic combustion chamber”, Thermophysics and Aeromechanics, 27 (2020), 573–584 | DOI
[26] Fedorova N.N., Goldfeld M.A., Pickalov V.V., “Investigation of oscillation modes in a high-speed flow with heat supply. I. Experiment”, Combustion, Explosion, and Shock Waves, 58 (2022), 536–545 | DOI | DOI
[27] “ANSYS CFD Academic Research”, Custom number 610336
[28] Menter F. R., “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA Journal, 32 (1994), 1598–1605 | DOI
[29] Maas U., Warnatz J., “Ignition processes in hydrogen-oxygen mixtures”, Combustion and Flame, 74 (1988), 53–69 | DOI
[30] Vankova O.S., Fedorova N.N., “Modeling of ignition and combustion of a coflowing hydrogen jet in a supersonic air flow”, Combustion, Explosion and Shock Waves, 57 (2021), 398–407 | DOI | DOI
[31] Fedorova N.N., Vankova O.S., Goldfeld M.A., “Unsteady regimes of hydrogen ignition and flame stabilization in a channel”, Combustion, Explosion and Shock Waves, 58 (2022), 127–134 | DOI | DOI