Numerical modeling of the influence of nanopurge of aluminum on burning of high-energy material in a closed volume
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 2, pp. 261-267.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theoretical study of combustion in the manometric bomb of the constant volume of charge, consisting of grains of high-energy material containing nanoscale aluminum powder, is presented. A comparison of an experimentally measured dependence of pressure growth in a manometric bomb with calculations on the thermodynamic model of burning of a hitch of high-energy material in a manometric bomb using an empirical law of the dependence of the rate of combustion on pressure and the conjugated model of non-stationary combustion. A numerical analysis of the effect of the additive of nanoscale aluminum powder in the composition of the high-energy material on the dynamics of burning charge in a pressure gauge bomb.
Keywords: high-energy material, aluminum nanoprofor, non-stationary combustion speed, numerical modeling.
@article{CHFMJ_2024_9_2_a11,
     author = {K. M. Moiseeva and A. Yu. Krainov and V. A. Poryazov},
     title = {Numerical modeling of the influence of nanopurge of aluminum on burning of high-energy material in a closed volume},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {261--267},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a11/}
}
TY  - JOUR
AU  - K. M. Moiseeva
AU  - A. Yu. Krainov
AU  - V. A. Poryazov
TI  - Numerical modeling of the influence of nanopurge of aluminum on burning of high-energy material in a closed volume
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2024
SP  - 261
EP  - 267
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a11/
LA  - ru
ID  - CHFMJ_2024_9_2_a11
ER  - 
%0 Journal Article
%A K. M. Moiseeva
%A A. Yu. Krainov
%A V. A. Poryazov
%T Numerical modeling of the influence of nanopurge of aluminum on burning of high-energy material in a closed volume
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 261-267
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a11/
%G ru
%F CHFMJ_2024_9_2_a11
K. M. Moiseeva; A. Yu. Krainov; V. A. Poryazov. Numerical modeling of the influence of nanopurge of aluminum on burning of high-energy material in a closed volume. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 2, pp. 261-267. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a11/

[1] Krainov A.Yu., Moiseeva K.M., Poryazov V.A., “Numerical simulation of non-stationary combustion of a high-energy material in a closed volume on the basis of the adjoint combustion model”, Chemical Physics and Mesoscopy, 25:3 (2023), 310–320

[2] DeLuca L. T., “Overview of al-based nanoenergetic ingredients for solid rocket propulsion”, Defence Technology, 14 (2018), 357–-365 | DOI

[3] Solomonov Yu.S., Lipanov A.V., Aliyev A.V., Dorofeev A.A., Solid-fuel adjustable propulsion systems, Mashinostroenie Publ., Moscow, 2011 (In Russ.)

[4] Burlov V.V., Grabin V.V., Kozlov A.Yu., Lusenko L.N., Monchenko N.M., Sidorov A.I., Shmelkov V.B., Ballistics of tubed artillery systems, Mashinostroenie, Moscow, 2006 (In Russ.)

[5] Assovskiy I. G., Physics of combustion and interior ballistics, Nauka, Moscow, 2005 (In Russ.)

[6] Novozhilov B. V., Novozhilov V. B., Theory of Solid-Propellant Nonsteady Combustion, Wiley, 2021 | MR

[7] Krainov A.Y., Poryazov V.A., “Numerical simulation of the extinction of N powder by a pressure drop based on a coupled combustion model”, Combustion, Explosion, and Shock Waves, 51:6 (2015), 664–669 | DOI

[8] Bazyn T., Krier H., Glumac N., “Combustion of nanoaluminum at elevated pressure and temperature behind reflected shock waves”, Combustion and Flame, 145:4 (2006), 703–713 | DOI

[9] Krainov A.Y., Poryazov V.A., Moiseeva K.M., Krainov D.A., “Numerical simulation of the high-temperature oxidation of a nanosize aluminum particle”, Journal of Engineering Physics and Thermophysics, 94:1 (2021), 79–87 | DOI

[10] Sundaram D.S., Yang V., Zarko V.E., “Combustion of nano aluminum particles (review)”, Combustion, Explosion, and Shock Waves, 51:2 (2015), 173–196 | DOI

[11] Krainov A.Y., Poryazov V.A., Moiseeva K.M., Krainov D.A., “Mathematical model and numerical investigation of combustion front propagation velocity in an aerosol of an aluminum nanopowder suspension in kerosene”, Journal of Engineering Physics and Thermophysics, 94 (2021), 753–764 | DOI