Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2024_9_2_a11, author = {K. M. Moiseeva and A. Yu. Krainov and V. A. Poryazov}, title = {Numerical modeling of the influence of nanopurge of aluminum on burning of high-energy material in a closed volume}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {261--267}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a11/} }
TY - JOUR AU - K. M. Moiseeva AU - A. Yu. Krainov AU - V. A. Poryazov TI - Numerical modeling of the influence of nanopurge of aluminum on burning of high-energy material in a closed volume JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2024 SP - 261 EP - 267 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a11/ LA - ru ID - CHFMJ_2024_9_2_a11 ER -
%0 Journal Article %A K. M. Moiseeva %A A. Yu. Krainov %A V. A. Poryazov %T Numerical modeling of the influence of nanopurge of aluminum on burning of high-energy material in a closed volume %J Čelâbinskij fiziko-matematičeskij žurnal %D 2024 %P 261-267 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a11/ %G ru %F CHFMJ_2024_9_2_a11
K. M. Moiseeva; A. Yu. Krainov; V. A. Poryazov. Numerical modeling of the influence of nanopurge of aluminum on burning of high-energy material in a closed volume. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 2, pp. 261-267. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a11/
[1] Krainov A.Yu., Moiseeva K.M., Poryazov V.A., “Numerical simulation of non-stationary combustion of a high-energy material in a closed volume on the basis of the adjoint combustion model”, Chemical Physics and Mesoscopy, 25:3 (2023), 310–320
[2] DeLuca L. T., “Overview of al-based nanoenergetic ingredients for solid rocket propulsion”, Defence Technology, 14 (2018), 357–-365 | DOI
[3] Solomonov Yu.S., Lipanov A.V., Aliyev A.V., Dorofeev A.A., Solid-fuel adjustable propulsion systems, Mashinostroenie Publ., Moscow, 2011 (In Russ.)
[4] Burlov V.V., Grabin V.V., Kozlov A.Yu., Lusenko L.N., Monchenko N.M., Sidorov A.I., Shmelkov V.B., Ballistics of tubed artillery systems, Mashinostroenie, Moscow, 2006 (In Russ.)
[5] Assovskiy I. G., Physics of combustion and interior ballistics, Nauka, Moscow, 2005 (In Russ.)
[6] Novozhilov B. V., Novozhilov V. B., Theory of Solid-Propellant Nonsteady Combustion, Wiley, 2021 | MR
[7] Krainov A.Y., Poryazov V.A., “Numerical simulation of the extinction of N powder by a pressure drop based on a coupled combustion model”, Combustion, Explosion, and Shock Waves, 51:6 (2015), 664–669 | DOI
[8] Bazyn T., Krier H., Glumac N., “Combustion of nanoaluminum at elevated pressure and temperature behind reflected shock waves”, Combustion and Flame, 145:4 (2006), 703–713 | DOI
[9] Krainov A.Y., Poryazov V.A., Moiseeva K.M., Krainov D.A., “Numerical simulation of the high-temperature oxidation of a nanosize aluminum particle”, Journal of Engineering Physics and Thermophysics, 94:1 (2021), 79–87 | DOI
[10] Sundaram D.S., Yang V., Zarko V.E., “Combustion of nano aluminum particles (review)”, Combustion, Explosion, and Shock Waves, 51:2 (2015), 173–196 | DOI
[11] Krainov A.Y., Poryazov V.A., Moiseeva K.M., Krainov D.A., “Mathematical model and numerical investigation of combustion front propagation velocity in an aerosol of an aluminum nanopowder suspension in kerosene”, Journal of Engineering Physics and Thermophysics, 94 (2021), 753–764 | DOI