Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2024_9_1_a7, author = {M. M. Rahmatullaev and B. U. Abraev}, title = {A new class of {Gibbs} measures for three-state {SOS} model on a {Cayley} tree}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {101--110}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a7/} }
TY - JOUR AU - M. M. Rahmatullaev AU - B. U. Abraev TI - A new class of Gibbs measures for three-state SOS model on a Cayley tree JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2024 SP - 101 EP - 110 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a7/ LA - en ID - CHFMJ_2024_9_1_a7 ER -
M. M. Rahmatullaev; B. U. Abraev. A new class of Gibbs measures for three-state SOS model on a Cayley tree. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 1, pp. 101-110. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a7/
[1] Bleher P.M., Ganikhodjaev N.N., “On pure phases of the Ising model on the Bethe lattices”, Theory of Probability and its Applications, 35 (1990), 216–227 | DOI | MR | Zbl
[2] Eshkabilov Yu.Kh., Rozikov U.A., Botirov G.I., “Phase transitions for a model with uncountable set of spin values on a Cayley tree”, Lobachevskii Journal of Mathematics, 34:3 (2013), 256–263 | DOI | MR | Zbl
[3] Georgii H.O., Gibbs Measures and Phase Transitions, W. de Gruyter, Berlin, 1988 | MR | Zbl
[4] Preston-Mefem K., Gibbs states on countable sets, Mir, Moscow, 1977 | MR
[5] Rahmatullaev M.M., Rozikov U.A., Ising model on Cayley trees: a new class of Gibbs measures and their comparison with known ones, 2017, arXiv: 1705.05184 | MR
[6] Sinai Ya.G., Theory of Phase Transitions: Rigorous Results, Elsevier Science, 2014 | MR
[7] Zachary S., “Countable state space Markov random fields and Markov chains on trees”, Annals of Probability, 11:4 (1983), 894–903 | DOI | MR
[8] Akin H., Rozikov U.A., Temir S., “A new set of limiting Gibbs measures for the Ising model on a Cayley tree”, Journal of Statistical Physics, 142:2 (2011), 314–321 | DOI | MR | Zbl
[9] Rahmatullaev M.M., “Ising model on trees: $(k_0)$-non translation-invariant Gibbs measures”, Journal of Physics: Conference Series, 819 (2017), 012019 | DOI | MR
[10] Rahmatullaev M.M., “$(k_0)$-periodic Gibbs measures for the Ising model on the Cayley tree”, Reports of Uzbekistan Academy of Sciences, 3 (2016), 9–12 | MR
[11] Rahmatullaev M.M., Abraev B.U., “Non-translation-invariant Gibbs measures of an SOS model on a Cayley tree”, Reports on Mathematical Physics, 86:3 (2020), 315–324 | DOI | MR | Zbl
[12] Külske C., Rozikov U.A., “Extremality of translation-invariant phases for three-state SOS-model on the binary tree”, Journal of Statistical Physics, 160 (2015), 659–680 | DOI | MR | Zbl
[13] Rozikov U.A., Suhov Y.M., “Gibbs measures for SOS model on a Cayley tree”, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 9:3 (2006), 471–488 | DOI | MR | Zbl
[14] Rahmatullaev M.M., Karshiboev O.Sh., “Translation-invariant Gibbs measures for the SOS model with external field on a Cayley tree”, Reports of Uzbekistan Academy of Sciences, 5 (2021), 3–6 | MR
[15] Rozikov U.A., Gibbs Measures on Cayley Trees, World Scientific, Singapore, 2013 | MR | Zbl