A new class of Gibbs measures for three-state SOS model on a Cayley tree
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 1, pp. 101-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

The phase transition phenomenon is one of the central problems of statistical mechanics. It occurs when the model possesses multiple Gibbs measures. In this paper, we consider a three-state SOS (solid-on-solid) model on a Cayley tree. We reduce description of Gibbs measures to solving of a non-linear functional equation, each solution of which corresponds to a Gibbs measure. We give some sufficiency conditions on the existence of multiple Gibbs measures for the model. We give a review of some known (translation-invariant, periodic, non-periodic) Gibbs measures of the model and compare them with our new measures. We show that the Gibbs measures found in the paper differ from the known Gibbs measures, i.e, we show that these measures are new.
Keywords: SOS model, Cayley tree, Gibbs measure, phase transition.
@article{CHFMJ_2024_9_1_a7,
     author = {M. M. Rahmatullaev and B. U. Abraev},
     title = {A new class of {Gibbs} measures for three-state {SOS} model on a {Cayley} tree},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {101--110},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a7/}
}
TY  - JOUR
AU  - M. M. Rahmatullaev
AU  - B. U. Abraev
TI  - A new class of Gibbs measures for three-state SOS model on a Cayley tree
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2024
SP  - 101
EP  - 110
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a7/
LA  - en
ID  - CHFMJ_2024_9_1_a7
ER  - 
%0 Journal Article
%A M. M. Rahmatullaev
%A B. U. Abraev
%T A new class of Gibbs measures for three-state SOS model on a Cayley tree
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 101-110
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a7/
%G en
%F CHFMJ_2024_9_1_a7
M. M. Rahmatullaev; B. U. Abraev. A new class of Gibbs measures for three-state SOS model on a Cayley tree. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 1, pp. 101-110. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a7/

[1] Bleher P.M., Ganikhodjaev N.N., “On pure phases of the Ising model on the Bethe lattices”, Theory of Probability and its Applications, 35 (1990), 216–227 | DOI | MR | Zbl

[2] Eshkabilov Yu.Kh., Rozikov U.A., Botirov G.I., “Phase transitions for a model with uncountable set of spin values on a Cayley tree”, Lobachevskii Journal of Mathematics, 34:3 (2013), 256–263 | DOI | MR | Zbl

[3] Georgii H.O., Gibbs Measures and Phase Transitions, W. de Gruyter, Berlin, 1988 | MR | Zbl

[4] Preston-Mefem K., Gibbs states on countable sets, Mir, Moscow, 1977 | MR

[5] Rahmatullaev M.M., Rozikov U.A., Ising model on Cayley trees: a new class of Gibbs measures and their comparison with known ones, 2017, arXiv: 1705.05184 | MR

[6] Sinai Ya.G., Theory of Phase Transitions: Rigorous Results, Elsevier Science, 2014 | MR

[7] Zachary S., “Countable state space Markov random fields and Markov chains on trees”, Annals of Probability, 11:4 (1983), 894–903 | DOI | MR

[8] Akin H., Rozikov U.A., Temir S., “A new set of limiting Gibbs measures for the Ising model on a Cayley tree”, Journal of Statistical Physics, 142:2 (2011), 314–321 | DOI | MR | Zbl

[9] Rahmatullaev M.M., “Ising model on trees: $(k_0)$-non translation-invariant Gibbs measures”, Journal of Physics: Conference Series, 819 (2017), 012019 | DOI | MR

[10] Rahmatullaev M.M., “$(k_0)$-periodic Gibbs measures for the Ising model on the Cayley tree”, Reports of Uzbekistan Academy of Sciences, 3 (2016), 9–12 | MR

[11] Rahmatullaev M.M., Abraev B.U., “Non-translation-invariant Gibbs measures of an SOS model on a Cayley tree”, Reports on Mathematical Physics, 86:3 (2020), 315–324 | DOI | MR | Zbl

[12] Külske C., Rozikov U.A., “Extremality of translation-invariant phases for three-state SOS-model on the binary tree”, Journal of Statistical Physics, 160 (2015), 659–680 | DOI | MR | Zbl

[13] Rozikov U.A., Suhov Y.M., “Gibbs measures for SOS model on a Cayley tree”, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 9:3 (2006), 471–488 | DOI | MR | Zbl

[14] Rahmatullaev M.M., Karshiboev O.Sh., “Translation-invariant Gibbs measures for the SOS model with external field on a Cayley tree”, Reports of Uzbekistan Academy of Sciences, 5 (2021), 3–6 | MR

[15] Rozikov U.A., Gibbs Measures on Cayley Trees, World Scientific, Singapore, 2013 | MR | Zbl