Boundary value problems with an integro-differential non-local condition for composite type differential equations of the fourth order
Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 4, pp. 516-527.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies new nonlocal boundary value problems with an integro-differential boundary condition for unsteady differential equations of the Sobolev type of the fourth order. The peculiarity of the studied problems is that they contain derivatives both in spatial variables and derivatives in time variables in the boundary condition. For the problems under study, the existence and uniqueness theorems of regular solutions are proved – solutions having all derivatives generalized by S.L. Sobolev included in the corresponding equations.
Keywords: composite type equation, Sobolev type equation, integro-differential boundary conditions, nonlocal problem, regular solution, solution existence, solution uniqueness.
@article{CHFMJ_2023_8_4_a4,
     author = {A. I. Kozhanov and Kh. Kenzhebay},
     title = {Boundary value problems with an integro-differential non-local condition for composite type differential equations of the fourth order},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {516--527},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_4_a4/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - Kh. Kenzhebay
TI  - Boundary value problems with an integro-differential non-local condition for composite type differential equations of the fourth order
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2023
SP  - 516
EP  - 527
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_4_a4/
LA  - ru
ID  - CHFMJ_2023_8_4_a4
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A Kh. Kenzhebay
%T Boundary value problems with an integro-differential non-local condition for composite type differential equations of the fourth order
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2023
%P 516-527
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_4_a4/
%G ru
%F CHFMJ_2023_8_4_a4
A. I. Kozhanov; Kh. Kenzhebay. Boundary value problems with an integro-differential non-local condition for composite type differential equations of the fourth order. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 4, pp. 516-527. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_4_a4/

[1] Tikhonov A.N., Samarskii A.A., Equations of Mathematical Physics, Nauka Publ., Moscow, 1977 (In Russ.) | MR

[2] Witham G.B., Linear and Nonlinear Waves, John Wiley and Sons, London, 1974 | MR

[3] Ikezi H., “Experimental study of solitons in plasma”, Solitons in action, Moscow, Mir Publ., 1981, 163–184 (In Russ.)

[4] Dzhuraev T.D., Boundary value problems for equations of mixed and mixed-composite types, Fan Publ., Tashkent, 1979 (In Russ.) | MR

[5] Kozhanov A. I., Composite Type Equations and Inverse Problems, VSP, Utrecht, 1999 | MR | Zbl

[6] Demidenko G.V., Uspensky S.V., Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Inc., New York, Basel, Marcel Dekker, 2003 | MR | MR

[7] Sveshnikov A.G., Alshin A.B., Korpusov M.O., Pletner Yu.D., Linear and nonlinear equations of the Sobolev type, Fizamatlit Publ., Moscow, 2007 (In Russ.)

[8] Korpusov M.O., Destruction in nonclassical wave equations, URSS Publ., Moscow, 2010 (In Russ.)

[9] Yakubov S.Ya, Linear differential-operator equations and their applications, Elm Publ., Baku, 1985 (In Russ.)

[10] Zamyshlyaeva A.A., Yuzeeva A.V., “Initial-final problem for the Boussinesq–Love equation”, Bulletin of South Ural State University. Ser. Mathematical modeling and programming, 2010, no. 5, 23–31 (In Russ.) | Zbl

[11] Zhegalov V.I., Mironov A.N., Utkina E.A., Equations with dominant partial derivative, Kazan (Volga Region) Federal University, Kazan, 2014 (In Russ.)

[12] Pulkina L.S., Problems with nonclassical conditions for hyperbolic equations, Samara University, Samara, 2012 (In Russ.)

[13] Popov N.S., “On the solvability of boundary value problems for multidimensional pseudo-hyperbolic equations with a non-local boundary condition of integral form”, Mathematical Notes of NEFU, 21:2 (2014), 69–80 (In Russ.) | MR | Zbl

[14] Alsykova A.A., “Nonlocal problems with integral conditions for Boussinesq equation”, Mathematical Notes of NEFU, 23:1 (2016), 3 —11 | Zbl

[15] Pulkina L. S., Beylin A. B., “Nonlocal approach to problems on longitudinal vibration in a short bar”, Electronic Journal of Differential Equations, 2019:29 (2019) | MR

[16] Bogatov A.V., Gilev A.V., Pulkina L.S., “A problem with a non-local condition for a fourth-order equation with multiple characteristics”, Bulletin of Russian universities. Mathematics, 27:139 (2022), 214–230 (In Russ.) | Zbl

[17] Ladyzhenskaya O.A., Ural'tseva N.N., Linear and Quasi-linear Elliptic Equations, Academic Press, New York, 1968 | MR | MR

[18] Tribel H., Interpolation Theory. Functional Spaces. Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978 | MR

[19] Sobolev S.L., Some Applications of Functional Analysis in Mathematical Physics, American Mathematical Society, 2008 | MR | MR

[20] Kozhanov A.I., “A problem with oblique derivative for some pseudoparabolic equations and equations close to them”, Siberian Mathematical Journal, 37:6 (1996), 1171–1181 | DOI | MR | Zbl

[21] Kozhanov A.I., Pulkina L.S., “On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations”, Differential Equations, 42:9 (2006), 1233–1246 | DOI | MR | MR | Zbl

[22] Kozhanov A.I., Dyuzheva A.V., “Solvability of a nonlocal problem with integral conditions for third-order Sobolev-type equations”, Mathematical Notes of NEFU, 27:4 (2020), 30–42

[23] Dzhenaliev M.T., On the theory of linear boundary value problems for loaded differential equations, Institute of Theoretical and Applied Mathematics, Almaty, 1995 (In Russ.)

[24] Nakhushev A.M., Loaded equations and their application, Nauka Publ., Moscow, 2012 (In Russ.)

[25] Trenogin V.A., Functional analysis, Nauka Publ., Moscow, 1980 (In Russ.) | MR

[26] Ladyzhenskaia O.A., Solonikov V.A., Ural'tseva N.N., Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, 1968 (In Russ.) | MR