Boundary value problem in a cylinder for a pseudohyperbolic equation
Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 4, pp. 469-482.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the first boundary value problem in a cylinder for a pseudohyperbolic equation with variable coefficients. A theorem on the existence of a unique generalized solution of a boundary value problem in a Sobolev space is proved. Estimates for the solution are obtained.
Keywords: generalized solution, pseudohyperbolic equation, Sobolev spaces, Galerkin method.
@article{CHFMJ_2023_8_4_a1,
     author = {L. N. Bondar' and G. V. Demidenko and V. S. Nurmakhmatov},
     title = {Boundary value problem in a cylinder for a pseudohyperbolic equation},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {469--482},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_4_a1/}
}
TY  - JOUR
AU  - L. N. Bondar'
AU  - G. V. Demidenko
AU  - V. S. Nurmakhmatov
TI  - Boundary value problem in a cylinder for a pseudohyperbolic equation
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2023
SP  - 469
EP  - 482
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_4_a1/
LA  - ru
ID  - CHFMJ_2023_8_4_a1
ER  - 
%0 Journal Article
%A L. N. Bondar'
%A G. V. Demidenko
%A V. S. Nurmakhmatov
%T Boundary value problem in a cylinder for a pseudohyperbolic equation
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2023
%P 469-482
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_4_a1/
%G ru
%F CHFMJ_2023_8_4_a1
L. N. Bondar'; G. V. Demidenko; V. S. Nurmakhmatov. Boundary value problem in a cylinder for a pseudohyperbolic equation. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 4, pp. 469-482. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_4_a1/

[1] Demidenko G.V., Uspenskii S.V., Partial Differential Equations and Systems Not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, New York, 2003 | MR | MR | Zbl

[2] Gerasimov S.I., Erofeev V.I., Problems of wave dynamics for structural elements, Russian Federal Nuclear Center — All-Russian Scientific Research Institute of Experimental Physics, Sarov, 2014 (In Russ.)

[3] Vlasov V.Z., Thin-walled Elastic Beams, National Science Foundation, Washington, 1961

[4] Bishop R. E. D., “Longitudinal waves in beams”, Aeronautical Quarterly, 3:4 (1952), 280–293 | DOI | MR

[5] Rao J. S., Advanced Theory of Vibration Wiley, Eastern, New Delhi, 1992

[6] Fedotov I., Polyanin A.D., Shatalov M., Tenkam H.M., “Longitudinal vibration of a Rayleigh — Bishop rod”, Doklady Physics, 434 (2010), 1–6 | MR | Zbl

[7] Sobolev S.L., Selected Works, v. 1, Equations of Mathematical Physics, Computational Mathematics, and Cubature Formulas, eds. G.V. Demidenko, V.L. Vaskevich, Springer, New York, 2006 | MR | Zbl

[8] Favini A., Yagi A., Degenerate Differential Equations in Banach Spaces, Marcel Dekker, New York, Basel, Hong Kong, 1999 | MR | Zbl

[9] Sveshnikov A.G., Al'shin A.B., Korpusov M.O., Pletner Yu.D., Linear and nonlinear equations of Sobolev type, Fizmatlit, Moscow, 2007 (In Russ.)

[10] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, Boston, Köln, 2003 | MR

[11] Demidenko G., “The Cauchy problem for pseudohyperbolic equations”, Selçuk Journal of Applied Mathematics, 1:1 (2000), 47–62 | MR | Zbl

[12] Fedotov I., Volevich L. R., “The Cauchy problem for hyperbolic equations not resolved with respect to the highest time derivative”, Russian Journal of Mathematical Physics, 13:3 (2006), 278–292 | DOI | MR | Zbl

[13] Demidenko G.V., “Solvability conditions of the Cauchy problem for pseudohyperbolic equations”, Siberian Mathematical Journal, 56:6 (2015), 1028–1041 | DOI | MR | Zbl

[14] Umarov Kh.G., “Cauchy problem for the torsional vibration equation of a nonlinear-elastic rod of infinite length”, Mechanics of Solids, 54:5 (2019), 726–740 (In Russ.) | DOI | Zbl

[15] Dyuzheva A.V., “A problem with an integral condition of the first kind for an equation of the fourth order”, Bulletin of Samara University. Natural Science Series, 25:1 (2019), 21–31 (In Russ.) | MR | Zbl

[16] Bondar L. N., Nurmakhmatov V., “On solvability of the boundary value problem for one pseudohyperbolic equation”, Siberian Electronic Mathematical Reports, 18:2 (2021), 1046–1057 | MR | Zbl

[17] Bondar L.N., Demidenko G.V., “Boundary value problems for one pseudohyperbolic equation in a quarter-plane”, Siberian Advances in Mathematics, 32:1 (2022), 1–16 | DOI | MR | Zbl

[18] Ladyzhenskaya O.A., Boundary Value Problems of Mathematical Physics, Springer-Verlag, New York, 1985 | MR | MR | Zbl

[19] Mikhailov V.P., Partial Differential Equations, Mir Publ., Moscow, 1978 | MR

[20] Demidenko G.V., Sobolev spaces and generalized solutions, Novosibirsk State University, Novosibirsk, 2015 (In Russ.)

[21] Sobolev S.L., Cubature Formulas and Modern Analysis: An Introduction, Gordon and Breach Science Publ., Philadelphia, 1992 | MR | MR | Zbl

[22] Trenogin V.A., Functional analysis, Nauka Publ., Moscow, 1980 (In Russ.) | MR

[23] Yosida K., Functional Analysis, Springer-Verlag, Berlin, Heidelberg, 1995 | MR | MR

[24] Uspenskii S.V., Demidenko G.V., Perepelkin V.G., Embedding theorems and applications to differential equations, Nauka Publ., Novosibirsk, 1984 (In Russ.) | MR