Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2023_8_3_a8, author = {E. V. Fomin}, title = {Study of the temperature dependence of the symmetrical grain boundary energies on the plane (110) in aluminum}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {421--435}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_3_a8/} }
TY - JOUR AU - E. V. Fomin TI - Study of the temperature dependence of the symmetrical grain boundary energies on the plane (110) in aluminum JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2023 SP - 421 EP - 435 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_3_a8/ LA - ru ID - CHFMJ_2023_8_3_a8 ER -
%0 Journal Article %A E. V. Fomin %T Study of the temperature dependence of the symmetrical grain boundary energies on the plane (110) in aluminum %J Čelâbinskij fiziko-matematičeskij žurnal %D 2023 %P 421-435 %V 8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_3_a8/ %G ru %F CHFMJ_2023_8_3_a8
E. V. Fomin. Study of the temperature dependence of the symmetrical grain boundary energies on the plane (110) in aluminum. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 3, pp. 421-435. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_3_a8/
[1] Lim H., Lee M. G., Kim J. H., Adams B. L., Wagoner R. H., “Simulation of polycrystal deformation with grain and grain boundary effects”, International Journal of Plasticity, 27:9 (2011), 1328–1354 | DOI | Zbl
[2] Wulfinghoff S., Bayerschen E., Bohlke T., “A gradient plasticity grain boundary yield theory”, International Journal of Plasticity, 51 (2013), 33–46 | DOI | MR
[3] Rubio R. A., Haouala S., LLorca A., “Grain boundary strengthening of FCC polycrystals”, Journal of Materials Research, 34:13 (2019), 2263–2274 | DOI
[4] Zuiko I., Kaibyshev R., “Effect of plastic deformation on the ageing behaviour of an Al-Cu-Mg alloy with a high Cu/Mg ratio”, Materials Science and Engineering: A, 737 (2018), 401–412 | DOI
[5] Sun W., Zhu Y., Marceau R., Wang L., Zhang Q., Gao X., Hutchinson C., “Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity”, Science, 363 (2019), 972–975 | DOI
[6] Bryukhanov I. A., “Dynamics of edge dislocation in Cu-Ni solid solution alloys at atomic scale”, International Journal of Plasticity, 135 (2020), 102834 | DOI
[7] Bryukhanov I. A., Emelyanov V. A., “Shear stress relaxation through the motion of edge dislocations in Cu and Cu-Ni solid solution: A molecular dynamics and discrete dislocation study”, Computational Materials Science, 201 (2022), 110885 | DOI
[8] Wang K., Xu Y., Zhan W., Xu J., “The impact of structural units on the dislocation nucleation of bi-crystal copper grain boundary”, Computational Materials Science, 218 (2023), 111900 | DOI
[9] Li X., Guan X., Jia Z., Chen P., Fan C., Shi F., “Twin-related grain boundary engineering and its influence on mechanical properties of face-centered cubic metals: A review”, Metals, 13 (2023), 155 | DOI
[10] Ye L., Mei B., Yu L., “Modeling of abnormal grain growth that considers anisotropic grain boundary energies by cellular automaton model”, Metals, 12 (2022), 1717 | DOI
[11] Bulatov V. V., Reed B. W., Kumar E., “Grain boundary energy function for fcc metals”, Acta Materialia, 65 (2014), 161–175 | DOI
[12] Spearot D. E., Jacob K. I., McDowell D. L., “Dislocation nucleation from bicrystal interfaces with dissociated structure”, International Journal of Plasticity, 23:1 (2006), 143–160 | DOI
[13] Tschopp M. A., McDowell D. L., “Dislocation nucleation in R3 asymmetric tilt grain boundaries”, International Journal of Plasticity, 24:2 (2008), 191–217 | DOI
[14] Tucker G. J., McDowell D. L., “Non-equilibrium grain boundary structure and inelastic deformation using atomistic simulations”, International Journal of Plasticity, 27 (2011), 841–857 | DOI | Zbl
[15] Burbery N. J., Das R., Ferguson W. G., “Modelling with variable atomic structure: Dislocation nucleation from symmetric tilt grain boundaries in aluminium”, Computational Materials Science, 101 (2015), 16–28 | DOI | MR
[16] Nino J. D., Johnson O. K., “Influence of grain boundary energy anisotropy on the evolution of grain boundary network structure during 3D anisotropic grain growth”, Computational Materials Science, 217 (2023), 111879 | DOI
[17] Holm E. A., Rohrer G. S., Foiles S. M., Rollett A. D., Miller H. M., Olmsted D. L., “Validating computed grain boundary energies in fcc metals using the grain boundary character distribution”, Acta Materialia, 59 (2011), 5250–5256 | DOI
[18] Ratanaphan S., Raabe D., Sarochawikasit R., Olmsted D. L., Rohrer G. S., Tu K. N., “Grain boundary character distribution in electroplated nanotwinned copper”, Journal of Materials Science, 52 (2017), 4070–4085 | DOI
[19] Burbery N. J., Das R., Ferguson W. G., “Transitional grain boundary structures and the influence on thermal, mechanical and energy properties from molecular dynamics simulations”, Acta Materialia, 108 (2016), 355–366 | DOI
[20] Foiles S. M., “Temperature dependence of grain boundary free energy and elastic constants”, Scripta Materialia, 62 (2010), 231–234 | DOI
[21] Plimpton S., “Fast parallel algorithms for short-range molecular dynamics”, Journal of Computational Physics, 117:1 (1995), 1–19 | DOI | Zbl
[22] Hirel P., “Atomsk: A tool for manipulating and converting atomic data files”, Computer Physics Communications, 197 (2015), 212–219 | DOI
[23] Apostol F., Mishin Y., “Interatomic potential for the Al-Cu system”, Physical Review B, 83 (2011), 054116 | DOI
[24] Stukowski A., “Visualization and analysis of atomistic simulation data with OVITO — the Open Visualization Tool”, Modelling and Simulation in Materials Science and Engineering, 18 (2010), 015012 | DOI
[25] Sutton A. P., Balluffi R. W., “Overview no. 61 On geometric criteria for low interfacial energy”, Acta Metallurgica, 35:9 (1987), 2177–2201 | DOI
[26] Tschopp A. P., Coleman S. P., McDowell D. L., “Symmetric and asymmetric tilt grain boundary structure and energy in Cu and Al (and transferability to other fcc metals)”, Integrating Materials and Manufacturing Innovation, 4 (2015), 176–189 | DOI
[27] Yin Q., Wang Z., Mishra R., Xia Z., “Atomic simulations of twist grain boundary structures and deformation behaviors in aluminum”, AIP Advances, 7 (2017), 015040 | DOI
[28] Fomin E. V., Mayer A. E., “Slip of low-angle tilt grain boundary (110) in FCC metals at perpendicular shear”, International Journal of Plasticity, 134 (2020), 102843 | DOI
[29] Han J., Vitek V., Srolovitz D. J., “Grain-boundary metastability and its statistical properties”, Acta Materialia, 104 (2016), 259–273 | DOI
[30] Ingle K. W., Crocker A. G., “On the structure of high-angle (110) CSL twist boundaries in f.c.c. metals”, Philosophical Magazine A, 41:5 (1979), 713–721 | DOI
[31] Goodfellow I., Bengio Y., Courville A., Deep Learning, MIT Press, 2016 | MR | Zbl
[32] Ramachandran P., Zoph B., Le Q. V., “Searching for Activation Functions”, 2017, arXiv: 1710.05941v2
[33] Kingma P., Ba J., “Adam: A method for stochastic optimization”, 2014, arXiv: 1412.6980 | Zbl