Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2023_8_3_a7, author = {S. V. Belim and E. V. Bogdanova}, title = {Study of extraordinary phase transition in thin anti-ferromagnetic films: computer simulation}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {410--420}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_3_a7/} }
TY - JOUR AU - S. V. Belim AU - E. V. Bogdanova TI - Study of extraordinary phase transition in thin anti-ferromagnetic films: computer simulation JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2023 SP - 410 EP - 420 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_3_a7/ LA - ru ID - CHFMJ_2023_8_3_a7 ER -
%0 Journal Article %A S. V. Belim %A E. V. Bogdanova %T Study of extraordinary phase transition in thin anti-ferromagnetic films: computer simulation %J Čelâbinskij fiziko-matematičeskij žurnal %D 2023 %P 410-420 %V 8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_3_a7/ %G ru %F CHFMJ_2023_8_3_a7
S. V. Belim; E. V. Bogdanova. Study of extraordinary phase transition in thin anti-ferromagnetic films: computer simulation. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 3, pp. 410-420. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_3_a7/
[1] Campagna M., “Surface magnetism: Recent progress and opportunities”, Journal of Vacuum Science Technology A, 3 (1985), 1491–1495 | DOI
[2] Gradmann U., “Surface magnetism”, Journal of Magnetism and Magnetic Materials, 100 (1991), 481–496 | DOI
[3] Potthoff M., Nolting W., “Surface magnetism studied within the mean-field approximation of the Hubbard model”, Physical Review B, 52 (1995), 15341 | DOI
[4] Diehl H. W., Shpot M., “Massive field-theory approach to surface critical behavior in three-dimensional systems”, Nuclear Physics B, 528:3 (1998), 595–647 | DOI | MR | Zbl
[5] Belim S. V., “Critical behavior of disordered systems with a free surface”, Journal of Experimental and Theoretical Physics, 103 (2006), 611–622 | DOI
[6] Belim S. V., Trushnikova E. V., “Computer simulation of critical behavior of semi-infinite antiferromagnetic material”, Physics of Metals and Metallography, 119 (2018), 441–447 | DOI
[7] Metlitski M., “Boundary criticality of the O(N) model in d = 3 critically revisited”, SciPost Physics, 12 (2022), 131 | DOI | MR
[8] Padayasi J., Krishnan A., Metlitski M., Gruzberg I., Meineri M., “The extraordinary boundary transition in the 3d O(N) model via conformal bootstrap”, SciPost Physics, 12 (2022), 190 | DOI | MR
[9] Parisen T. F., “Boundary critical behavior of the three-dimensional Heisenberg universality class”, Physical Review Letters, 126 (2021), 135701 | DOI
[10] Hu M., Deng Y., Lu J.-P., “Extraordinary-log surface phase transition in the three-dimensional XY model”, Physical Review Letters, 127 (2021), 120603 | DOI
[11] Ding C., Zhu W., Guo W., Zhang L., Special transition and extraordinary phase on the surface of a two-dimensional quantum Heisenberg antiferromagnet, 2023, arXiv: 2110.04762
[12] Arnold C. S., Pappas D. P., “Gd(0001): A semi-infinite three-dimensional Heisenberg ferromagnet with ordinary surface transition”, Physical Review Letters, 85 (2000), 5202 | DOI
[13] Krech M., “Surface scaling behavior of isotropic Heisenberg systems: Critical exponents, structure factor, and profiles”, Physical Review B, 62 (2000), 6360 | DOI
[14] Deng Y., Blote H. W. J., Nightingale M. P., “Surface and bulk transitions in three-dimensional O(n) models”, Physical Review E, 72 (2005), 016128 | DOI | MR
[15] Zhang L.-R., Ding C., Deng Y., Zhang L., “Surface criticality of antiferromagnetic Potts model”, Physical Review B, 105 (2022), 224415 | DOI
[16] Landau D. P., Binder K., “Phase diagrams and multicritical behavior of a three-dimensional anisotropic Heisenberg antiferromagnet”, Physical Review B, 17 (1978), 2328–2342 | DOI