Recovering of the heat transfer coefficient in transmission problems with imperfect contact conditions
Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 3, pp. 331-350

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider systems of parabolic equations and well-posedness questions in Sobolev spaces of inverse problems of recovering the heat transfer coefficients at the interface which are included in the transmission condition of the imperfect contact type. Under certain conditions on the data, it is demonstrated that there exists a unique solution to the problem. The proof employs a priori estimates and the fixed-point theorem.
Keywords: inverse problem, transmission problem, heat transfer coefficient, parabolic system, heat and mass transfer.
@article{CHFMJ_2023_8_3_a2,
     author = {S. G. Pyatkov and V. A. Belonogov},
     title = {Recovering of the heat transfer coefficient in transmission problems with imperfect contact conditions},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {331--350},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_3_a2/}
}
TY  - JOUR
AU  - S. G. Pyatkov
AU  - V. A. Belonogov
TI  - Recovering of the heat transfer coefficient in transmission problems with imperfect contact conditions
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2023
SP  - 331
EP  - 350
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_3_a2/
LA  - ru
ID  - CHFMJ_2023_8_3_a2
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%A V. A. Belonogov
%T Recovering of the heat transfer coefficient in transmission problems with imperfect contact conditions
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2023
%P 331-350
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_3_a2/
%G ru
%F CHFMJ_2023_8_3_a2
S. G. Pyatkov; V. A. Belonogov. Recovering of the heat transfer coefficient in transmission problems with imperfect contact conditions. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 3, pp. 331-350. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_3_a2/