Reflection of microwaves from VO$_2$-SiO$_2$ composite layer in the vicinity of phase transition
Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 2, pp. 271-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper investigates the reflection of microwaves from a composite material layer consisting of vanadium dioxide and silicon dioxide near the semiconductor-to-metal phase transition. The dependencies of the reflection coefficient on temperature, the volume fraction of vanadium dioxide in the composite, and the thickness of the composite layer in the phase transition region were calculated.
Keywords: microwave, vanadium dioxide, phase transition, composite material.
@article{CHFMJ_2023_8_2_a9,
     author = {D. A. Kuzmin and M. O. Usik and I. V. Bychkov and M. G. Vakhitov and D. S. Klygach},
     title = {Reflection of microwaves from {VO}$_2${-SiO}$_2$ composite layer in the vicinity of phase transition},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {271--279},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a9/}
}
TY  - JOUR
AU  - D. A. Kuzmin
AU  - M. O. Usik
AU  - I. V. Bychkov
AU  - M. G. Vakhitov
AU  - D. S. Klygach
TI  - Reflection of microwaves from VO$_2$-SiO$_2$ composite layer in the vicinity of phase transition
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2023
SP  - 271
EP  - 279
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a9/
LA  - ru
ID  - CHFMJ_2023_8_2_a9
ER  - 
%0 Journal Article
%A D. A. Kuzmin
%A M. O. Usik
%A I. V. Bychkov
%A M. G. Vakhitov
%A D. S. Klygach
%T Reflection of microwaves from VO$_2$-SiO$_2$ composite layer in the vicinity of phase transition
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2023
%P 271-279
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a9/
%G ru
%F CHFMJ_2023_8_2_a9
D. A. Kuzmin; M. O. Usik; I. V. Bychkov; M. G. Vakhitov; D. S. Klygach. Reflection of microwaves from VO$_2$-SiO$_2$ composite layer in the vicinity of phase transition. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 2, pp. 271-279. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a9/

[1] Capmany J., Novak D., “Microwave photonics combines two worlds”, Nature Photonics, 1 (2007), 319–330 | DOI

[2] Capmany J., Li G., Lim C., Yao J., “Microwave photonics: current challenges towards widespread application”, Optics Express, 21:19 (2013), 22862–22867 | DOI

[3] Marpaung D., Yao J., Capmany J., “Integrated microwave photonics”, Nature Photonics, 13 (2019), 80–90 | DOI

[4] Morin F.S., “Oxides which show a metal-to-insulator transition at the Neel temperature”, Physical Review Letters, 3 (1959), 34–38 | DOI

[5] Mott N.F., Metal-insulator transitions, Nauka, Moscow, 1979 (In Russ.)

[6] Bychkov I. V., “Diffraction of a plane electromagnetic wave by a VO$_2$ microsphere in the phase transition region”, Physics of the Solid State, 62:6 (2020), 993–997 | DOI

[7] Long L., Taylor S., Wang L., “Enhanced infrared emission by thermally switching the excitation of magnetic polariton with scalable microstructured VO$_2$ metasurfaces”, ACS Photonics, 7:8 (2020), 2219–2227 | DOI

[8] Kang T., Ma Z., Qin J., et al., “Large-scale, power-efficient Au/VO$_2$ active metasurfaces for ultrafast optical modulation”, Nanophotonics, 10:2 (2021), 909–918 | DOI

[9] Tripathi A., John J., Kruk S., et al., “Tunable Mie-resonant dielectric metasurfaces based on VO$_2$ phase-transition materials”, ACS Photonics, 8:4 (2021), 1206–1213 | DOI

[10] Usik M. O., Kharitonova O. G., Kuzmin D. A., et al., “Excitation of surface plasmon-polaritons in hybrid graphene metasurface — vanadium dioxidenanostructure using prism coupling”, Chelyabinsk Physical and Mathematical Journal, 6:3 (2021), 375–383

[11] Lazukova N.I., Gubanov V.A., “Optical spectrum of vanadium dioxide at the semiconductor-metal phase transition”, Optics and spectroscopy, 42:6 (1977), 1200–1202 (In Russ.)

[12] Osmolovskaya O.M., Smirnov V.M., Selyutin A.A., “Synthesis and magnetic properties of two-dimensional vanadium(IV) oxyde nanostructures on silica surface”, Russian Journal of General Chemistry, 78:10 (2008), 1872–1876 | DOI

[13] Kirilenko V.V., Zhigarnovskiy B.M., Beyrakhov A.G., et al., “Synthesizing film-forming materials from vanadium oxides and investigating the possibilities of producing optical coatings based on them”, Journal of Optical Technology, 77:9 (2010), 582–591 | DOI

[14] Zhao L., Miao L., Liu C., et al., “Solution-processed VO$_2$-SiO$_2$ composite films with simultaneously enhanced luminous transmittance, solar modulation ability and anti-oxidation property”, Scientific Reports, 4 (2014), 7000 | DOI

[15] Wang C., Zhao L., Liang Z., et al., “New intelligent multifunctional SiO2/VO2 composite films with enhanced infrared light regulation performance, solar modulation capability, and superhydrophobicity”, Science and Technology of Advanced Materials, 18:1 (2017), 563–573 | DOI

[16] Zhang J., Wang T., Xu W., et al., “Thermochromic VO$_2$–SiO$_2$ composite coating from ammonium citrato-oxovanadate (IV)”, Nanotechnology, 32:22 (2021), 225402 | DOI

[17] Tazawa M., Jin P., Tanemur S., “Optical constants of V$_{1-x}$W$_x$O$_2$ films”, Applied Optics, 37:9 (1998), 1858–1861 | DOI

[18] Kuzmin D.A., Bychkov I.V., Vakhitov M.G., Klygach D.S., “Reflection of microwaves from thin film of vanadium dioxide”, Chelyabinsk Physical and Mathematical Journal, 7:1 (2022), 123–130 (In Russ.) | DOI