Nonlinear inverse problems for some equations with fractional derivatives
Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 2, pp. 190-202

Voir la notice de l'article provenant de la source Math-Net.Ru

The solvability of nonlinear inverse problems with a time-dependent unknown element for evolution equations in Banach spaces with Gerasimov — Caputo derivatives is investigated. A theorem is obtained on the existence of a unique smooth solution of a nonlinear problem for an equation solved with respect to the highest fractional derivative with a bounded operator in the linear part. It is used in the study of degenerate evolution equations under the condition of $p$-boundedness of a pair of operators in the linear part of the equation — at the highest derivative and at the desired function. In the case of the action of a nonlinear operator into a subspace without degeneration, the existence of a unique smooth solution is proved; and for the independent of the nonlinear operator from elements of the degeneration subspace, the existence of a unique generalized solution is shown. The abstract results obtained for degenerate equations are used in the study of an inverse problem for a modified system of Sobolev equations with unknown coefficients at lower order fractional derivatives in time.
Keywords: Gerasimov — Caputo fractional derivative, inverse problem, degenerate evolution equation, Sobolev system of equations.
@article{CHFMJ_2023_8_2_a2,
     author = {V. E. Fedorov and M. V. Plekhanova and N. D. Ivanova and A. F. Shuklina and N. V. Filin},
     title = {Nonlinear inverse problems for some equations with fractional derivatives},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {190--202},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a2/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - M. V. Plekhanova
AU  - N. D. Ivanova
AU  - A. F. Shuklina
AU  - N. V. Filin
TI  - Nonlinear inverse problems for some equations with fractional derivatives
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2023
SP  - 190
EP  - 202
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a2/
LA  - ru
ID  - CHFMJ_2023_8_2_a2
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A M. V. Plekhanova
%A N. D. Ivanova
%A A. F. Shuklina
%A N. V. Filin
%T Nonlinear inverse problems for some equations with fractional derivatives
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2023
%P 190-202
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a2/
%G ru
%F CHFMJ_2023_8_2_a2
V. E. Fedorov; M. V. Plekhanova; N. D. Ivanova; A. F. Shuklina; N. V. Filin. Nonlinear inverse problems for some equations with fractional derivatives. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 2, pp. 190-202. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a2/