Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2023_8_2_a2, author = {V. E. Fedorov and M. V. Plekhanova and N. D. Ivanova and A. F. Shuklina and N. V. Filin}, title = {Nonlinear inverse problems for some equations with fractional derivatives}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {190--202}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a2/} }
TY - JOUR AU - V. E. Fedorov AU - M. V. Plekhanova AU - N. D. Ivanova AU - A. F. Shuklina AU - N. V. Filin TI - Nonlinear inverse problems for some equations with fractional derivatives JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2023 SP - 190 EP - 202 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a2/ LA - ru ID - CHFMJ_2023_8_2_a2 ER -
%0 Journal Article %A V. E. Fedorov %A M. V. Plekhanova %A N. D. Ivanova %A A. F. Shuklina %A N. V. Filin %T Nonlinear inverse problems for some equations with fractional derivatives %J Čelâbinskij fiziko-matematičeskij žurnal %D 2023 %P 190-202 %V 8 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a2/ %G ru %F CHFMJ_2023_8_2_a2
V. E. Fedorov; M. V. Plekhanova; N. D. Ivanova; A. F. Shuklina; N. V. Filin. Nonlinear inverse problems for some equations with fractional derivatives. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 2, pp. 190-202. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a2/
[1] Orlovsky D. G., “Parameter determination in a differential equation of fractional order with Riemann — Liouville fractional derivative in a Hilbert space”, Journal of Siberian Federal University. Mathematics Physics, 8:1 (2015), 55–63 | DOI | MR
[2] Fedorov V. E., Ivanova N. D., “Identification problem for degenerate evolution equations of fractional order”, Fractional Calculus and Applied Analysis, 20:3 (2017), 706–721 | DOI | MR | Zbl
[3] Fedorov V.E., Nazhimov R.R., “Inverse problems for a class of degenerate evolution equations with Riemann — Liouville derivative”, Fractional Calculus and Applied Analysis, 22:2 (2019), 271–286 | DOI | MR | Zbl
[4] Orlovsky D. G., “Determination of the parameter of the differential equation of fractional order with the Caputo derivative in Hilbert space”, Journal of Physics: Conference Series, 1205:1 (2019), 012042 | DOI | MR
[5] Fedorov V.E., Kostić M., “Identification problem for strongly degenerate evolution equations with the Gerasimov — Caputo derivative”, Differential Equations, 56:12 (2020), 1613–1627 | DOI | DOI | MR | MR | Zbl
[6] Fedorov V.E., Nagumanova A.V., “Linear inverse problems for degenerate evolution equations with the Gerasimov — Caputo derivative in the sectorial case”, Mathematical Notes of NEFU, 27:2 (2020), 54–76 (In Russ.)
[7] Fedorov V. E., Nagumanova A. V., Avilovich A. S., “A class of inverse problems for evolution equations with the Riemann — Liouville derivative in the sectorial case”, Mathematical Methods in the Applied Sciences, 44:15 (2021), 11961–11969 | DOI | MR | Zbl
[8] Fedorov V.E., Nagumanova A.V., Kostić M., “A class of inverse problems for fractional order degenerate evolution equations”, Journal of Inverse and Ill-Posed Problems, 29:2 (2021), 173–184 | DOI | MR | Zbl
[9] Kostin A. B., Piskarev S. I., “Inverse source problem for the abstract fractional differential equation”, Journal of Inverse and Ill-Posed Problems, 29:2 (2021), 267–281 | DOI | MR | Zbl
[10] Turov M. M., Fedorov V. E., Kien B. T., “Linear inverse problems for multi-term equations with Rieman – Liouville derivative”, The Bulletin of Irkutsk State University. Ser. Mathematics, 38 (2021), 36–53 | DOI | MR | Zbl
[11] Orlovsky D., Piskarev S., “Inverse problem with final overdetermination for time-fractional differential equation in a Banach space”, Journal of Inverse and Ill-Posed Problems, 30:2 (2022), 221–237 | DOI | MR | Zbl
[12] Plekhanova M.V., Izhberdeeva E.M., “On the correctness of the inverse problem for a degenerate evolutionary equation with the Dzhrbashyan — Nersesyan fractional derivative”, Results of science and technology. Ser. Contemporary mathematics and its applications. Thematic reviews, 213 (2022), 80–88 (In Russ.) | DOI
[13] Fedorov V.E., Borel L.V., Ivanova N.D., “Nonlinear inverse problems for a class of equations with the Riemann — Liouville derivatives”, Notes of PDMI scientific seminars, 519 (2022), 264–288 (In Russ.)
[14] Fedorov V. E., Plekhanova M. V., Melekhina D. V., “Nonlinear inverse problems for equations with Dzhrbashyan — Nersesyan derivatives”, Fractal and Fractional, 7 (2023), 464 | DOI
[15] Fedorov V. E., Ivanova N. D., Borel L. V., Avilovich A. S., “Nonlinear inverse problems for fractional differential equations with sectorial operators”, Lobachevskii Journal of Mathematics, 43:11 (2022), 3125–3141 | DOI | MR
[16] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, Inc., New York, Basel, 2000 | MR
[17] Fedorov V.E., Gordievskikh D.M., Plekhanova M.V., “Equations in Banach spaces with a degenerate operator under a fractional derivative”, Differential Equations, 51:10 (2015), 1367–1375 (In Russ.) | DOI | Zbl
[18] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, Boston, 2003 | MR | Zbl
[19] Sobolev S.L., “On a new problem of mathematical physics”, News of USSR Academy of Sciences. Mathematical series, 18 (1954), 3–50 (In Russ.) | MR | Zbl
[20] Demidenko G.V., Uspenskii S.V., Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, Inc., New York, 2003 | MR | MR | Zbl
[21] Gordievskikh D.M., Fedorov V.E., “Solutions for initial boundary value problems for some degenerate equations systems of fractional order with respect to the time”, The Bulletin of Irkutsk State University. Ser. Mathematics, 12 (2015), 12–22 (In Russ.) | Zbl