Nonlinear inverse problems for some equations with fractional derivatives
Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 2, pp. 190-202.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solvability of nonlinear inverse problems with a time-dependent unknown element for evolution equations in Banach spaces with Gerasimov — Caputo derivatives is investigated. A theorem is obtained on the existence of a unique smooth solution of a nonlinear problem for an equation solved with respect to the highest fractional derivative with a bounded operator in the linear part. It is used in the study of degenerate evolution equations under the condition of $p$-boundedness of a pair of operators in the linear part of the equation — at the highest derivative and at the desired function. In the case of the action of a nonlinear operator into a subspace without degeneration, the existence of a unique smooth solution is proved; and for the independent of the nonlinear operator from elements of the degeneration subspace, the existence of a unique generalized solution is shown. The abstract results obtained for degenerate equations are used in the study of an inverse problem for a modified system of Sobolev equations with unknown coefficients at lower order fractional derivatives in time.
Keywords: Gerasimov — Caputo fractional derivative, inverse problem, degenerate evolution equation, Sobolev system of equations.
@article{CHFMJ_2023_8_2_a2,
     author = {V. E. Fedorov and M. V. Plekhanova and N. D. Ivanova and A. F. Shuklina and N. V. Filin},
     title = {Nonlinear inverse problems for some equations with fractional derivatives},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {190--202},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a2/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - M. V. Plekhanova
AU  - N. D. Ivanova
AU  - A. F. Shuklina
AU  - N. V. Filin
TI  - Nonlinear inverse problems for some equations with fractional derivatives
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2023
SP  - 190
EP  - 202
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a2/
LA  - ru
ID  - CHFMJ_2023_8_2_a2
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A M. V. Plekhanova
%A N. D. Ivanova
%A A. F. Shuklina
%A N. V. Filin
%T Nonlinear inverse problems for some equations with fractional derivatives
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2023
%P 190-202
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a2/
%G ru
%F CHFMJ_2023_8_2_a2
V. E. Fedorov; M. V. Plekhanova; N. D. Ivanova; A. F. Shuklina; N. V. Filin. Nonlinear inverse problems for some equations with fractional derivatives. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 2, pp. 190-202. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a2/

[1] Orlovsky D. G., “Parameter determination in a differential equation of fractional order with Riemann — Liouville fractional derivative in a Hilbert space”, Journal of Siberian Federal University. Mathematics Physics, 8:1 (2015), 55–63 | DOI | MR

[2] Fedorov V. E., Ivanova N. D., “Identification problem for degenerate evolution equations of fractional order”, Fractional Calculus and Applied Analysis, 20:3 (2017), 706–721 | DOI | MR | Zbl

[3] Fedorov V.E., Nazhimov R.R., “Inverse problems for a class of degenerate evolution equations with Riemann — Liouville derivative”, Fractional Calculus and Applied Analysis, 22:2 (2019), 271–286 | DOI | MR | Zbl

[4] Orlovsky D. G., “Determination of the parameter of the differential equation of fractional order with the Caputo derivative in Hilbert space”, Journal of Physics: Conference Series, 1205:1 (2019), 012042 | DOI | MR

[5] Fedorov V.E., Kostić M., “Identification problem for strongly degenerate evolution equations with the Gerasimov — Caputo derivative”, Differential Equations, 56:12 (2020), 1613–1627 | DOI | DOI | MR | MR | Zbl

[6] Fedorov V.E., Nagumanova A.V., “Linear inverse problems for degenerate evolution equations with the Gerasimov — Caputo derivative in the sectorial case”, Mathematical Notes of NEFU, 27:2 (2020), 54–76 (In Russ.)

[7] Fedorov V. E., Nagumanova A. V., Avilovich A. S., “A class of inverse problems for evolution equations with the Riemann — Liouville derivative in the sectorial case”, Mathematical Methods in the Applied Sciences, 44:15 (2021), 11961–11969 | DOI | MR | Zbl

[8] Fedorov V.E., Nagumanova A.V., Kostić M., “A class of inverse problems for fractional order degenerate evolution equations”, Journal of Inverse and Ill-Posed Problems, 29:2 (2021), 173–184 | DOI | MR | Zbl

[9] Kostin A. B., Piskarev S. I., “Inverse source problem for the abstract fractional differential equation”, Journal of Inverse and Ill-Posed Problems, 29:2 (2021), 267–281 | DOI | MR | Zbl

[10] Turov M. M., Fedorov V. E., Kien B. T., “Linear inverse problems for multi-term equations with Rieman – Liouville derivative”, The Bulletin of Irkutsk State University. Ser. Mathematics, 38 (2021), 36–53 | DOI | MR | Zbl

[11] Orlovsky D., Piskarev S., “Inverse problem with final overdetermination for time-fractional differential equation in a Banach space”, Journal of Inverse and Ill-Posed Problems, 30:2 (2022), 221–237 | DOI | MR | Zbl

[12] Plekhanova M.V., Izhberdeeva E.M., “On the correctness of the inverse problem for a degenerate evolutionary equation with the Dzhrbashyan — Nersesyan fractional derivative”, Results of science and technology. Ser. Contemporary mathematics and its applications. Thematic reviews, 213 (2022), 80–88 (In Russ.) | DOI

[13] Fedorov V.E., Borel L.V., Ivanova N.D., “Nonlinear inverse problems for a class of equations with the Riemann — Liouville derivatives”, Notes of PDMI scientific seminars, 519 (2022), 264–288 (In Russ.)

[14] Fedorov V. E., Plekhanova M. V., Melekhina D. V., “Nonlinear inverse problems for equations with Dzhrbashyan — Nersesyan derivatives”, Fractal and Fractional, 7 (2023), 464 | DOI

[15] Fedorov V. E., Ivanova N. D., Borel L. V., Avilovich A. S., “Nonlinear inverse problems for fractional differential equations with sectorial operators”, Lobachevskii Journal of Mathematics, 43:11 (2022), 3125–3141 | DOI | MR

[16] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, Inc., New York, Basel, 2000 | MR

[17] Fedorov V.E., Gordievskikh D.M., Plekhanova M.V., “Equations in Banach spaces with a degenerate operator under a fractional derivative”, Differential Equations, 51:10 (2015), 1367–1375 (In Russ.) | DOI | Zbl

[18] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, Boston, 2003 | MR | Zbl

[19] Sobolev S.L., “On a new problem of mathematical physics”, News of USSR Academy of Sciences. Mathematical series, 18 (1954), 3–50 (In Russ.) | MR | Zbl

[20] Demidenko G.V., Uspenskii S.V., Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, Inc., New York, 2003 | MR | MR | Zbl

[21] Gordievskikh D.M., Fedorov V.E., “Solutions for initial boundary value problems for some degenerate equations systems of fractional order with respect to the time”, The Bulletin of Irkutsk State University. Ser. Mathematics, 12 (2015), 12–22 (In Russ.) | Zbl