Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2023_8_2_a10, author = {R. A. Makaryin and M. V. Zhelezny and D. Yu. Karpenkov}, title = {Generalized model of the magnetostructural phase transition in {La(Fe,Si)}$_{13}$ compounds under the simultaneous action of temperature, magnetic field and pressure}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {280--291}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a10/} }
TY - JOUR AU - R. A. Makaryin AU - M. V. Zhelezny AU - D. Yu. Karpenkov TI - Generalized model of the magnetostructural phase transition in La(Fe,Si)$_{13}$ compounds under the simultaneous action of temperature, magnetic field and pressure JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2023 SP - 280 EP - 291 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a10/ LA - en ID - CHFMJ_2023_8_2_a10 ER -
%0 Journal Article %A R. A. Makaryin %A M. V. Zhelezny %A D. Yu. Karpenkov %T Generalized model of the magnetostructural phase transition in La(Fe,Si)$_{13}$ compounds under the simultaneous action of temperature, magnetic field and pressure %J Čelâbinskij fiziko-matematičeskij žurnal %D 2023 %P 280-291 %V 8 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a10/ %G en %F CHFMJ_2023_8_2_a10
R. A. Makaryin; M. V. Zhelezny; D. Yu. Karpenkov. Generalized model of the magnetostructural phase transition in La(Fe,Si)$_{13}$ compounds under the simultaneous action of temperature, magnetic field and pressure. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 2, pp. 280-291. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a10/
[1] Balli M., Jandl S., Fournier P., et al., “Advanced materials for magnetic cooling: Fundamentals and practical aspects”, Applied Physics Reviews, 4:2 (2017), 021305 | DOI
[2] Kitanovski A., “Energy applications of magnetocaloric materials”, Advanced Energy Materials, 10:10 (2020), 1903741 | DOI
[3] Brück E., Tegus O., Thanh D.T.C., et al., “Magnetocaloric refrigeration near room temperature (invited)”, Journal of Magnetism and Magnetic Materials, 310:2 (3) (2007), 2793–2799 | DOI
[4] Scheibel F., Gottschall T., Taubel A., et al., “Hysteresis design of magnetocaloric materials — from basic mechanisms to applications”, Energy Technology, 6:8 (2018), 1397–1428 | DOI
[5] Greco A., Aprea C., Maiorino A., et al., “A review of the state of the art of solid-state caloric cooling processes at room-temperature before 2019”, International Journal of Refrigeration, 106 (2019), 66–88 | DOI
[6] Silva D.J., Ventura J., Araujo J.P., “Caloric devices: A review on numerical modeling and optimization strategies”, International Journal of Energy Research, 45:13 (2021), 18498–18539 | DOI
[7] Liu J., Gottschall T., Skokov K.P., et al., “Giant magnetocaloric effect driven by structural transitions”, Nature Materials, 11:7 (2012), 620–626 | DOI
[8] Lovell E., Bez H.N., Boldrin D.C., et al., “The La(Fe,Mn,Si)$_{13}$H$_{z}$ magnetic phase transition under pressure”, Physica Status Solidi — Rapid Research Letters, 11:10 (2017), 1700143 | DOI
[9] Cohen L.F., “Contributions to hysteresis in magnetocaloric materials”, Physica Status Solidi B, 225 (2018), 1700317 | DOI
[10] Stern-Taulats E., Castan T., Manosa L., et al., “Multicaloric materials and effects”, MRS Bulletin, 43:4 (2018), 295–298 | DOI
[11] Jia L., Sun J.R., Wang F.W., et al., “Volume dependence of the magnetic coupling in LaFe$_{13-x}$Si$_{x}$ based compounds”, Applied Physics Letters, 92:10 (2008), 101904 | DOI
[12] Basso V., “The magnetocaloric effect at the first-order magneto-elastic phase transition”, Journal of Physics: Condensed Matter, 23:22 (2011), 226004 | DOI
[13] Basso V., Piazzi M., Bennati C., et al., “Hysteresis and phase transition kinetics in magnetocaloric materials”, Physica Status Solidi B, 255:2 (2017), 1700278 | DOI
[14] Valiev E.Z., “Simulation of the magnetic and magnetocaloric properties of hydrides of the La(Fe$_{0.88}$Si$_{0.12}$)$_{13}$ compound by applying a negative pressure”, Physics of the Solid State, 56:1 (2014), 47–50 | DOI
[15] Valiev E.Z., Kazantsev V.A., “Magnetocaloric effect in La(Fe$_{x}$Si$_{1 ? x}$)$_{13}$ ferromagnets”, Journal of Experimental and Theoretical Physics, 113:6 (2011), 1000–1005 | DOI
[16] Van Dijk N.H., “Landau model evaluation of the magnetic entropy change in magnetocaloric materials”, Journal of Magnetism and Magnetic Materials, 529 (2021), 167871 | DOI
[17] Yamada H., Goto T., “Magneto-volume coupling constant in itinerant-electron metamagnets”, Journal of Magnetism and Magnetic Materials, 272–276 (2004), 460–461 | DOI
[18] Bean C.P., Rodbell D.S., “Magnetic disorder as a first-order phase transformation”, Physical Review, 126:1 (1962), 104–115 | DOI
[19] Valiev E.Z., “Entropy and magnetocaloric effects in ferromagnets undergoing first- and second-order magnetic phase transitions”, Journal of Experimental and Theoretical Physics, 108:2 (2009), 279–285 | DOI
[20] Karpenkov D.Yu., Karpenkov A.Yu., Skokov K.P., et al., “Pressure dependence of magnetic properties in La(Fe,Si)$_{13}$: Multistimulus responsiveness of caloric effects by modeling and experiment”, Physical Review Applied, 13:3 (2020), 034014 | DOI | MR
[21] Gruner M.E., Keune W., Landers J., et al., “Moment-volume coupling in La(Fe$1_{?x}$Si$x_{}$)$_{13}$”, Physica Status Solidi B, 255:2 (2018), 1700465 | DOI
[22] Yamada H., Fukamichi K., Goto T., “Itinerant-electron metamagnetism and strong pressure dependence of the Curie temperature”, Physical Review B, 65:2 (2001), 024413 | DOI
[23] Yako H., Fujieda S., Fujita A., et al., “ressure effect on the Curie temperature of La(Fe$_{0.88}$Si$_{0.12?y}$Al$_{y}$)$_{13}$”, Journal of Physics: Conference Series, 266:1 (2011), 012023 | DOI
[24] Giannozzi P., Baroni S., Bonini N., et al., “Approximations for Brillouin and its reverse function”, COMPEL — The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 35:6 (2016), 2095–2099 | DOI
[25] Zhang H., Wang F., Zhao T., et al., “Thermally activated itinerant metamagnetic transition in LaFe$_{11.7}$Si$_{1.3}$”, Physical Review B, 70:21 (2004), 212402 | DOI
[26] Yako H., Fujieda S., Fujita A., et al., “Influence of demagnetization effect on the kinetics of the itinerant-electron metamagnetic transition in magnetic refrigerant La(Fe$_{0.88}$Si$_{0.12}$)$_{13}$”, IEEE Transactions on Magnetics, 47:10 (2011), 2482–2485 | DOI
[27] Moreno-Ramirez L.M., Blazquez J.S., Radulov I.A., et al., “Combined kinetic and Bean — Rodbell approach for describing field-induced transitions in LaFe$_{11.6}$Si$_{1.4}$ alloys”, Journal of Physics D: Applied Physics, 54:13 (2021), 135003 | DOI