Representations of algebra $sl_2(\mathbb R)$ and ordinary differential equations
Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 2, pp. 173-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe all nonequivalent representations of the algebra $sl_2(\mathbb{R})$ in the space of vector fields $\mathrm{Vect}\, \mathbb{R}^{2}$. For each of these representations all ordinary differential equations admitting representation data were found in terms of a basis differential invariants and operators of the invariant differentiation. We also found the Casimir operators of the corresponding universal enveloping algebra, the equations generated by the Casimir operator are integrated and the algebraic independence of the operators of invariant differentiation and Casimir operator are proved.
Keywords: algebra $sl_2 (\mathbb{R})$, group analysis of differential equations, Casimir operator, operator of the invariant differentiation.
@article{CHFMJ_2023_8_2_a1,
     author = {M. V. Neshchadim and A. A. Simonov and A. P. Chupakhin},
     title = {Representations of algebra $sl_2(\mathbb R)$ and ordinary differential equations},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {173--189},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a1/}
}
TY  - JOUR
AU  - M. V. Neshchadim
AU  - A. A. Simonov
AU  - A. P. Chupakhin
TI  - Representations of algebra $sl_2(\mathbb R)$ and ordinary differential equations
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2023
SP  - 173
EP  - 189
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a1/
LA  - ru
ID  - CHFMJ_2023_8_2_a1
ER  - 
%0 Journal Article
%A M. V. Neshchadim
%A A. A. Simonov
%A A. P. Chupakhin
%T Representations of algebra $sl_2(\mathbb R)$ and ordinary differential equations
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2023
%P 173-189
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a1/
%G ru
%F CHFMJ_2023_8_2_a1
M. V. Neshchadim; A. A. Simonov; A. P. Chupakhin. Representations of algebra $sl_2(\mathbb R)$ and ordinary differential equations. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 2, pp. 173-189. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a1/

[1] Chebotarev N.G., Li groups theory, GITTL, Moscow, Leningrad, 1940 (In Russ.)

[2] Miura R. M., Bäcklund transformations, Springer, Heidelberg, 1976 | MR | Zbl

[3] Ovsyannikov L.V., Group Analysis of Differential Equations, Academic Press, New York, 1982 | MR | MR | Zbl

[4] Pommaret J., Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach Science Publ., New York, 1978 | MR | MR | Zbl

[5] Ibragimov N.H., Transformation Groups Applied to Mathematical Physics, D. Riedel Publ.,, Dordrecht, 1985 | MR | MR

[6] Olver P.J., Application of Lie Groups to Differential Equations, Springer, New York, 2000 | MR

[7] Vinogradov A.M., Symmetries of Partial Differential Equations: Conservation Laws, Applications, Algorithms, Kluwer Acad. Publ., Dordrecht, Boston, London, 1989 | MR

[8] Vinogradov A.M., Cohomological Analysis of Partial Differential Equations and Secondary Calculus, American Mathematical Society, 2001 | MR | Zbl

[9] Kaptsov O.V., Methods of Integration of Equations with Partial Derivatives, Fizmatlit Publ., Moscow, 2009 (In Russ.)

[10] Ibragimov N.H., “ABC of group analysis”, Mathematics, cybernetics, 1989, no. 8, 3–44 (In Russ.)

[11] Ibragimov N.H., “Group analysis experience”, Mathematics, cybernetics, 1991, no. 7, 3–47 (In Russ.)

[12] Ovsienko V.Yu., Tabachnikov S.L., Projective differential geometry. Old and new: from the Schwarzian derivative to the cohomologies of diffeomorphisms groups, MTsNMO, Moscow, 2008 (In Russ.)

[13] Lang S., $SL_2(\mathbb{R})$, Addison-Wesley Publ., Reading, 1975 | MR

[14] Zhelobenko D.P., Basic structures and methods of representation theory, MTsNMO, Moscow, 2004 (In Russ.)

[15] Kirillov A.A., Elements of the Theory of Representations, Springer-Verlag, Berlin, New York, 1976 | MR | MR | Zbl

[16] Gisharde A., Cohomologies of topological groups and Lie algebras, Mir, Moscow, 1984 (In Russ.)

[17] Mikhalichenko G.G., Group symmetry of physical structures, Barnaul State Pedagogical University, Barnaul, 2003 (In Russ.)