Boundary value problem for an inhomogeneous fourth order equations with constant coefficients
Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 2, pp. 157-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a fourth-order equation with constant coefficients, a boundary value problem in a rectangular domain is considered. The uniqueness of a solution of the stated problem is proved by the method of energy integrals. The solution is written in terms of the constructed Green's function. In substantiating the uniform convergence, the “small denominator” is established to be nonzero.
Keywords: fourth-order equation, multiple characteristics, lower terms, boundary value problem, uniqueness of solution, existence of solution, Green's function.
@article{CHFMJ_2023_8_2_a0,
     author = {Yu. P. Apakov and S. M. Mamajonov},
     title = {Boundary value problem for an inhomogeneous fourth order equations with constant coefficients},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {157--172},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a0/}
}
TY  - JOUR
AU  - Yu. P. Apakov
AU  - S. M. Mamajonov
TI  - Boundary value problem for an inhomogeneous fourth order equations with constant coefficients
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2023
SP  - 157
EP  - 172
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a0/
LA  - ru
ID  - CHFMJ_2023_8_2_a0
ER  - 
%0 Journal Article
%A Yu. P. Apakov
%A S. M. Mamajonov
%T Boundary value problem for an inhomogeneous fourth order equations with constant coefficients
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2023
%P 157-172
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a0/
%G ru
%F CHFMJ_2023_8_2_a0
Yu. P. Apakov; S. M. Mamajonov. Boundary value problem for an inhomogeneous fourth order equations with constant coefficients. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 2, pp. 157-172. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a0/

[1] Turbin M.V., “Investigation of a initial-boundary value problem for the Herschel — Bulkley fluid motion model”, Bulletin of Voronezh State University. Series Physics. Mathematics, 2013, no. 2, 246–257 (In Russ.) | Zbl

[2] Whitham G.B., Linear and Non-linear Waves, John Wiley Sons, London, 1974 | MR

[3] Shabrov S.A., “On estimates of influence functions for a fourth-order mathematical model”, Bulletin of Voronezh State University. Series Physics. Mathematics, 2015, no. 2, 168–179 (In Russ.) | Zbl

[4] Benney D. J., Luke J. C., “On the interactions of permanent waves of finite amplitude”, Journal of Mathematical Physics, 43 (1964), 309–313 | DOI | MR | Zbl

[5] Dzhuraev T.D., Sopuev A., Towards the theory of fourth-order partial differential equations, Fan, Tashkent, 2000 (In Russ.) | MR

[6] Dzhuraev T.D., Apakov Yu.P., “On the theory of the third-order equation with multiple characteristics containing the second time derivative”, Ukrainian Mathematical Journal, 62:1 (2010), 43–55 | DOI | MR | Zbl

[7] Apakov Yu. P., Rutkauskas S., “On a boundary problem to third order PDE with multiple characteristics”, Nonlinear Analysis: Modeling and Control, 16:3 (2011), 255–269 | DOI | MR | Zbl

[8] Apakov Yu. P., “On the solution of a boundary-value problem for a third-order equation with multiple characteristics”, Ukrainian Mathematical Journal, 64:1 (2012), 1–11 | DOI | MR

[9] Apakov Yu. P. Irgashev B. Yu., “Boundary-value problem for a degenerate high-odd-order equation”, Ukrainian Mathematical Journal, 66:10 (2015), 1475–1488 | DOI | MR

[10] Apakov Yu. P., Zhuraev A. Kh., “Third boundary-value problem for a third-order differential equation with multiple characteristics”, Ukrainian Mathematical Journal, 70:9 (2019), 1467–1476 | DOI | MR | Zbl

[11] Apakov Yu. P., “On unique solvability of boundary-value problem for a viscous transonic equation”, Lobachevski Journal of Mathematics, 41:9 (2020), 1754–1761 | DOI | MR | Zbl

[12] Amanov D., Murzambetova M.B., “Boundary value problem for a fourth-order equation with a minor term”, Bulletin of Udmurt University. Mathematics. Mechanics. Computer science, 2013, no. 1, 3–10 (In Russ.) | Zbl

[13] Sabitov K.B., Fadeeva O.V., “Initial boundary value problem for the equation of forced vibrations of a cantilever beam”, Bulletin of Samara State Technical University. Ser. Physical and Mathematics science, 25:1 (2021), 51–66 (In Russ.) | DOI | Zbl

[14] Irgashev B.Yu., “A boundary value problem for a degenerate higher order equation with lower terms”, Bulletin of the Institute of Mathematics, 2019, no. 6, 23–30 (In Russ.)

[15] Irgashev B.Yu., “A boundary value problem for an equation of high even order”, Bulletin of Volgograd State University. Series 1. Mathematics. Physics, 2016, no. 3 (33), 6–18 (In Russ.)

[16] Urinov A. K., Azizov M. S., “Boundary value problems for a fourth order partial equation with an unknown right-hand part”, Lobachevskii Journal of Mathematics, 42:3 (2021), 632–640 | DOI | MR | Zbl

[17] Hilbert D., “Mathematisch-Physikalische Klasse aus dem Jahre 1904”, Nachrichten von der Königl Gesellschaft der Wissenschaften zu Göttingen, Commissionsverlag der Dieterich’schen Universitatsbuchhandlung Luder Horstmann, 1904