Boundary value problem for an inhomogeneous fourth order equations with constant coefficients
Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 2, pp. 157-172

Voir la notice de l'article provenant de la source Math-Net.Ru

For a fourth-order equation with constant coefficients, a boundary value problem in a rectangular domain is considered. The uniqueness of a solution of the stated problem is proved by the method of energy integrals. The solution is written in terms of the constructed Green's function. In substantiating the uniform convergence, the “small denominator” is established to be nonzero.
Keywords: fourth-order equation, multiple characteristics, lower terms, boundary value problem, uniqueness of solution, existence of solution, Green's function.
@article{CHFMJ_2023_8_2_a0,
     author = {Yu. P. Apakov and S. M. Mamajonov},
     title = {Boundary value problem for an inhomogeneous fourth order equations with constant coefficients},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {157--172},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a0/}
}
TY  - JOUR
AU  - Yu. P. Apakov
AU  - S. M. Mamajonov
TI  - Boundary value problem for an inhomogeneous fourth order equations with constant coefficients
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2023
SP  - 157
EP  - 172
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a0/
LA  - ru
ID  - CHFMJ_2023_8_2_a0
ER  - 
%0 Journal Article
%A Yu. P. Apakov
%A S. M. Mamajonov
%T Boundary value problem for an inhomogeneous fourth order equations with constant coefficients
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2023
%P 157-172
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a0/
%G ru
%F CHFMJ_2023_8_2_a0
Yu. P. Apakov; S. M. Mamajonov. Boundary value problem for an inhomogeneous fourth order equations with constant coefficients. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 2, pp. 157-172. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a0/