Asymptotic expansions of resonances for waveguides coupled through converging windows
Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 1, pp. 72-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two-dimensional waveguides coupled through small windows are considered. First terms of the asymptotic expansion of resonances are obtained and studied for the case when the distance between the windows decreases. Method of matching of the asymptotic expansions of solutions of boundary value problems is used.
Keywords: resonance, asymptotics, coupled waveguides, scattering, low-dimensional system.
@article{CHFMJ_2023_8_1_a5,
     author = {E. S. Trifanova and A. S. Bagmutov and V. G. Katasonov and I. Yu. Popov},
     title = {Asymptotic expansions of resonances for waveguides coupled through converging windows},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {72--82},
     year = {2023},
     volume = {8},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a5/}
}
TY  - JOUR
AU  - E. S. Trifanova
AU  - A. S. Bagmutov
AU  - V. G. Katasonov
AU  - I. Yu. Popov
TI  - Asymptotic expansions of resonances for waveguides coupled through converging windows
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2023
SP  - 72
EP  - 82
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a5/
LA  - en
ID  - CHFMJ_2023_8_1_a5
ER  - 
%0 Journal Article
%A E. S. Trifanova
%A A. S. Bagmutov
%A V. G. Katasonov
%A I. Yu. Popov
%T Asymptotic expansions of resonances for waveguides coupled through converging windows
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2023
%P 72-82
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a5/
%G en
%F CHFMJ_2023_8_1_a5
E. S. Trifanova; A. S. Bagmutov; V. G. Katasonov; I. Yu. Popov. Asymptotic expansions of resonances for waveguides coupled through converging windows. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 1, pp. 72-82. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a5/

[1] Aslanyan A., Parnovski L., Vassiliev D., “Complex resonances in acoustic waveguides”, The Quarterly Journal of Mechanics and Applied Mathematics, 53:3 (2000), 429–447

[2] Duclos P., Exner P., Meller B., “Open quantum dots: Resonances from perturbed symmetry and bound states in strong magnetic fields”, Reports on Mathematical Physics, 47:2 (2001), 253–267

[3] Edward J., “On the resonances of the Laplacian on waveguides”, ournal of Mathematical Analysis and Application, 272:1 (2002), 89–116

[4] Christiansen T., “Some upper bounds on the number of resonances for manifolds with infinite cylindrical ends”, Annales Henri Poincaré, 3 (2002), 895–920

[5] Exner P., Kovarik H., Quantum Waveguides, Springer, Berlin, 2015

[6] Osipov P.P., Nasyrov R.R., “Resonance curve in rectangular closed channel”, Lobachevskii Journal of Mathematics, 41 (2020), 1283–-1288

[7] Lax P.D., Phillips R.S., Scattering Theory, Academic Press, New York, 1967

[8] Sjöstrand J., Zworski M., “Complex scaling and the distribution of scattering poles”, Journal of the American Mathematical Society, 4 (1991), 729–769

[9] Bonnet-Ben Dhia A.-S., Chesnel L., Pagneux V., “Trapped modes and reflectionless modes as eigenfunctions of the same spectral problem”, Proceedings of the Royal Society. A, 474 (2018), 20180050

[10] Agmon S., “A perturbation theory of resonances”, Communications on Pure and Applied Mathematics, 51 (1998), 1255–1309

[11] Rouleux M., “Resonances for a semi-classical Schrödinger operator near a non trapping energy level”, Publication of RIMS Kyoto University, 34 (1998), 487–523

[12] Khrushchev S.V., Nikol'skii N.K., Pavlov B.S., “Unconditional bases of exponentials and of reproducing kernels”, Complex Analysis and Spectral Theory, Springer-Verlag, Berlin, New York, 1981, 214–335

[13] Gadyl'shin R.R., “Existence and asymptotics of poles with small imaginary part for the Helmholtz resonator”, Russian Mathematical Surveys, 52:1 (1997), 1–72

[14] Frolov S.V., Popov I.Yu., “Resonances for laterally coupled quantum waveguides”, Journal of Mathematical Physics, 41:7 (2000), 4391–4405

[15] Vorobiev A.M., Bagmutov A.S., Popov A.I, “On formal asymptotic expansion of resonance for quantum waveguide with perforated semitransparent barrier”, Nanosystems: Physics, Chemistry, Mathematics, 10:4 (2019), 415–419

[16] Popov I.Y., “Extension theory and localization of resonances for domains of trap type”, Mathematics of the USSR — Sbornik, 71:1 (1990), 209–234

[17] Popov I.Y., “The resonator with narrow slit and the model based on the operator extensions theory”, Journal of Mathematical Physics, 33:11 (1992), 3794–3801

[18] Popov I.Y., Popova S.L., “The extension theory and resonances for a quantum waveguide”, Physics Letters A, 173 (1993), 484–488

[19] Popov I.Y., Popova S.L., “Zero-width slit model and resonances in mesoscopic systems”, Europhysics Letters, 24:5 (1993), 373–377

[20] Gadyl'shin R.R., “Analogues of the Helmholtz resonator in homogenization theory”, Sbornik: Mathematics, 193:11 (2002), 1611–1638

[21] Borisov D.I., Pankrashkin K.V., “Gap opening and split band edges in waveguides coupled by a periodic system of small windows”, Mathematical Notes, 93:5 (2013), 660–675

[22] Borisov D.I., “On the band spectrum of a Schrödinger operator in a periodic system of domains coupled by small windows”, Russian Journal of Mathematical Physics, 22:2 (2015), 153–160

[23] Borisov D., Cardone G., Durante T., “Homogenization and norm resolvent convergence for elliptic operators in a strip perforated along a curve”, Proceedings of the Royal Society of Edinburgh. Section A: Mathematics, 146:6 (2016), 1115–1158

[24] Nazarov S.A., Orive-Illera R., Perez-Martinez M.E., “Asymptotic structure of the spectrum in a Dirichlet-strip with double periodic perforations”, Networks and Heterogeneous Media, 14:4 (2019), 733–757

[25] Fassari S., Popov I.Y., Rinaldi F., “On the behaviour of the two-dimensional Hamiltonian $-\Delta+\lambda[\delta(x+x_{0})+\delta(x-x_{0})]$ as the distance between the two centres vanishes”, Physica Scripta, 95 (2020), 075209

[26] Exner P., Vugalter S., “Asymptotic estimates for bound states in quantum waveguides coupled laterally through a narrow window”, Annales de l’Institut Henri Poincaré, 65 (1996), 109–123

[27] Popov I.Yu., “Asymptotics of bound states and bands for waveguides coupled through small windows”, Applied Mathematics Letters, 14 (2001), 109–113.

[28] Popov I.Yu., “Asymptotics of resonances and bound states for laterally coupled curved quantum waveguides”, Physics Letters A, 269 (2000), 148–153

[29] Popov I.Yu., Tesovskaya E.S., “Electron in a multilayered magnetic structure: resonance asymptotics”, Theoretical and Mathematical Physics, 146:3 (2006), 361–372

[30] Gortinskaya L.V., Popov I.Yu., Tesovskaya E.S., Uzdin V.M., “Electronic transport in the multilayers with very thin magnetic layers”, Physica E, 36 (2007), 12–16

[31] Trifanova E.S., “Resonance phenomena in curved quantum waveguides coupled via windows”, Technical Physics Letters, 35 (2009), 180–182

[32] Il'in A.M., Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, American Mathematical Society, Providence, 1992