Emulation of high-speed plate collision with an artificial neural network
Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 1, pp. 129-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on a continuum model of high-speed impact of plates, a set of training data is constructed, according to which an artificial neural network was trained to determine the velocity profile of the rear surface of the target plate from the impact parameters and parameters of the material model. The trained neural network was used as a fast emulator of high speed plate impact. The use of the Bayesian approach to the model calibration made it possible to solve the inverse problem of determining the parameters of the material model from the velocity profile of the rear surface.
Keywords: continuum model of matter dynamics, artificial neural network, Bayesian approach to model calibration.
@article{CHFMJ_2023_8_1_a11,
     author = {V. V. Pogorelko and A. E. Mayer and E. V. Fomin and E. V. Fedorov},
     title = {Emulation of high-speed plate collision with an artificial neural network},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {129--139},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a11/}
}
TY  - JOUR
AU  - V. V. Pogorelko
AU  - A. E. Mayer
AU  - E. V. Fomin
AU  - E. V. Fedorov
TI  - Emulation of high-speed plate collision with an artificial neural network
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2023
SP  - 129
EP  - 139
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a11/
LA  - ru
ID  - CHFMJ_2023_8_1_a11
ER  - 
%0 Journal Article
%A V. V. Pogorelko
%A A. E. Mayer
%A E. V. Fomin
%A E. V. Fedorov
%T Emulation of high-speed plate collision with an artificial neural network
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2023
%P 129-139
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a11/
%G ru
%F CHFMJ_2023_8_1_a11
V. V. Pogorelko; A. E. Mayer; E. V. Fomin; E. V. Fedorov. Emulation of high-speed plate collision with an artificial neural network. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 1, pp. 129-139. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a11/

[1] Barker L. M., Hollenbach R. E., “Laser interferometer for measuring high velocities of any reflecting surface”, Journal of Applied Physics, 43:11 (1972), 4669–4672

[2] Garkushin G. V., Kannel G. I., Razorenov S. V., Savinykh A. S., “Anomaly in the dynamic strength of austenitic stainless steel 12Cr19Ni10Ti under shock wave loading”, Mechanics of Solids, 52:4 (2017), 407–416

[3] De Resseguier T., Hemery S., Lescoute E., Villechaise P., Kannel G. I., Razorenov S. V., “Spall fracture and twinning in laser shock-loaded single-crystal magnesium”, Journal of Applied Physics, 121:16 (2017), 165104

[4] Zaretsky E. B., Kannel G. I., “The high temperature impact response of tungsten and chromium”, Journal of Applied Physics, 122:11 (2017), 115901

[5] Saveleva N. V., Bayandin Y. V., Savinykh A. S., Garkushin G. V., Razorenov S. V., Naimark O. B., “The formation of elastoplastic fronts and spall fracture in AMg6 alloy under shock-wave loading”, Technical Physics Letters, 44:9 (2018), 823–826

[6] Mayer A. E., Krasnikov V. S., Mayer P. N., Pogorelko V. V., “Multiscale models of metal behavior and structural change under the action of high-current electron irradiation”, Journal of Physics: Conference Series, 830:1 (2017), 012072

[7] Popova T. V., Mayer A. E., Khishchenko K. V., “Evolution of shock compression pulses in polymethylmethacrylate and aluminum”, Journal of Applied Physics, 123 (2018), 235902

[8] Beniwal A., Dadhich R., Alankar A., “Deep learning based predictive modeling for structure property linkages”, Materialia, 8 (2019), 100435

[9] Frankel A. L., Jones R. E., Alleman C., Templeton J. A., “redicting the mechanical response of oligocrystals with deep learning”, Computational Material Science, 169 (2019), 109099

[10] Li X., Roth C. C., Mohr D., “Machine-learning based temperature- and rate-dependent plasticity model: Application to analysis of fracture experiments on DP steel”, International Journal of Plasticity, 118 (2019), 320–344

[11] Pandya K. S., Roth C. C., Mohr D., “Strain rate and temperature dependent fracture of aluminum alloy 7075: Experiments and neural network modeling”, International Journal of Plasticity, 135 (2020), 102788

[12] Zhang A., Mohr D., “Using neural networks to represent von Mises plasticity with isotropic hardening”, International Journal of Plasticity, 132 (2020), 102732

[13] Gracheva N. A., Lekanov M. V., Mayer A. E., Fomin E. V., “Application of neural networks for modeling shock-wave processes in aluminum”, Mechanics of Solids, 56:3 (2021), 326–342

[14] Tohme T., Vanslette K., Youcef-Toumi K., “A generalized Bayesian approach to model calibration”, Reliability Engineering and System Safety, 204 (2020), 107141

[15] Khishchenko K. V., Mayer A. E., “igh- and low-entropy layers in solids behind shock and ramp compression waves”, International Journal of Mechanical Science, 189 (2021), 105971