Linear functional equations in the class of antiderivatives from the Lebesgue functions on curves segments
Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 1, pp. 5-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

Linear functional equations on simple smooth curves with shift function of infinite order with fixed points at the ends of the curve are considered. The purpose is to study the sets of solutions of such equations in Hölder classes of functions $H_{\mu}$, $0{\mu}\leq 1$, and classes of antiderivatives of functions from the classes $L_p$, $p>1$, with coefficients and right-hand sides from the same classes, and to investigate the solutions behavior in a neighborhood of fixed points. The research method uses F. Riesz's criterion for a function belonging to the class of antiderivatives of functions from the $L_p$, $p>1$, classes. For solutions classes we obtain estimates of the parameters ${\mu}$ and $p$ depending on parameters of classes of coefficients and right-hand sides in the studied equations and properties of the shift function in a neighborhood of a fixed point.
Keywords: linear functional equation, infinite order shift function, class of Hölder functions, class of Lebesgue functions antiderivatives.
@article{CHFMJ_2023_8_1_a0,
     author = {V. L. Dilman and D. A. Komissarova},
     title = {Linear functional equations in the class of antiderivatives from the {Lebesgue} functions on curves segments},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {5--17},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a0/}
}
TY  - JOUR
AU  - V. L. Dilman
AU  - D. A. Komissarova
TI  - Linear functional equations in the class of antiderivatives from the Lebesgue functions on curves segments
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2023
SP  - 5
EP  - 17
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a0/
LA  - ru
ID  - CHFMJ_2023_8_1_a0
ER  - 
%0 Journal Article
%A V. L. Dilman
%A D. A. Komissarova
%T Linear functional equations in the class of antiderivatives from the Lebesgue functions on curves segments
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2023
%P 5-17
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a0/
%G ru
%F CHFMJ_2023_8_1_a0
V. L. Dilman; D. A. Komissarova. Linear functional equations in the class of antiderivatives from the Lebesgue functions on curves segments. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 1, pp. 5-17. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a0/

[1] Brodsiy Ya.S., Slipenko A.K., Functional Equations, Vishcha shkola, Kiyev, 1983 (In Russ.)

[2] Kuczma M., An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, Panstwowe Wydawnictwo Naukowe (Polish Scientific Publishers) and Uniwersytet Slaski, Warszawa; Krakow; Katowice, 1985

[3] Likhtarnikov L.M., An elementary introduction to functional equations, Lan', St. Petersburg, 1997 (In Russ.)

[4] Pelyukh G.P., Sharkovskiy A.N., Method of invariants in the functional equations theory, Institute of Mathematics of NAS, Kiyev, 2013 (In Russ.)

[5] Ilolov M., Avezov R., “On a class of linear functional equations with constant coefficients”, News of Academy of Sciences of the Republic of Tadzhikistan, 177:4 (2019), 7–12 (In Russ.)

[6] Dil'man V.L., “Linear functional equations in the Hölder classes of functions on a simple smooth curve”, Bulletin of the South Ural State University Ser. Mathematics. Mechanics. Physics, 12:2 (2020), 5–12 (In Russ.)

[7] Dil'man V.L., Komissarova D.A., “xistence and uniqueness conditions for solutions of linear functional equations in the classes of antiderivatives from Lebesgue functions on a simple smooth curve”, Bulletin of the South Ural State University Ser. Mathematics. Mechanics. Physics, 13:4 (2021), 13–23 (In Russ.)

[8] Litvinchuk G. S., Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift, Springer Science + Business Media, 2012

[9] Kravchenko V. G., Litvinchuk G. S., “Introduction to the Theory of Singular Integral Operators with Shift”, Springer Science+Business Media, 2014

[10] Chibrikova L.I., Dil'man V.L., “Solutions of an integral equation with generalized logarithmic kernel in $L_p$, $p > 1$”, Soviet Mathematics, 30:4 (1986), 33–46

[11] Kholmogorov A.N., Fomin S.V., Elements of function theory and functional analysis, Nauka, Moscow, 1968 (In Russ.)