Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2023_8_1_a0, author = {V. L. Dilman and D. A. Komissarova}, title = {Linear functional equations in the class of antiderivatives from the {Lebesgue} functions on curves segments}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {5--17}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a0/} }
TY - JOUR AU - V. L. Dilman AU - D. A. Komissarova TI - Linear functional equations in the class of antiderivatives from the Lebesgue functions on curves segments JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2023 SP - 5 EP - 17 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a0/ LA - ru ID - CHFMJ_2023_8_1_a0 ER -
%0 Journal Article %A V. L. Dilman %A D. A. Komissarova %T Linear functional equations in the class of antiderivatives from the Lebesgue functions on curves segments %J Čelâbinskij fiziko-matematičeskij žurnal %D 2023 %P 5-17 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a0/ %G ru %F CHFMJ_2023_8_1_a0
V. L. Dilman; D. A. Komissarova. Linear functional equations in the class of antiderivatives from the Lebesgue functions on curves segments. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 1, pp. 5-17. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a0/
[1] Brodsiy Ya.S., Slipenko A.K., Functional Equations, Vishcha shkola, Kiyev, 1983 (In Russ.)
[2] Kuczma M., An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, Panstwowe Wydawnictwo Naukowe (Polish Scientific Publishers) and Uniwersytet Slaski, Warszawa; Krakow; Katowice, 1985
[3] Likhtarnikov L.M., An elementary introduction to functional equations, Lan', St. Petersburg, 1997 (In Russ.)
[4] Pelyukh G.P., Sharkovskiy A.N., Method of invariants in the functional equations theory, Institute of Mathematics of NAS, Kiyev, 2013 (In Russ.)
[5] Ilolov M., Avezov R., “On a class of linear functional equations with constant coefficients”, News of Academy of Sciences of the Republic of Tadzhikistan, 177:4 (2019), 7–12 (In Russ.)
[6] Dil'man V.L., “Linear functional equations in the Hölder classes of functions on a simple smooth curve”, Bulletin of the South Ural State University Ser. Mathematics. Mechanics. Physics, 12:2 (2020), 5–12 (In Russ.)
[7] Dil'man V.L., Komissarova D.A., “xistence and uniqueness conditions for solutions of linear functional equations in the classes of antiderivatives from Lebesgue functions on a simple smooth curve”, Bulletin of the South Ural State University Ser. Mathematics. Mechanics. Physics, 13:4 (2021), 13–23 (In Russ.)
[8] Litvinchuk G. S., Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift, Springer Science + Business Media, 2012
[9] Kravchenko V. G., Litvinchuk G. S., “Introduction to the Theory of Singular Integral Operators with Shift”, Springer Science+Business Media, 2014
[10] Chibrikova L.I., Dil'man V.L., “Solutions of an integral equation with generalized logarithmic kernel in $L_p$, $p > 1$”, Soviet Mathematics, 30:4 (1986), 33–46
[11] Kholmogorov A.N., Fomin S.V., Elements of function theory and functional analysis, Nauka, Moscow, 1968 (In Russ.)