Dynamics of a family of maps defined by quadratic polynomials
Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 4, pp. 447-465.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider maps $F \colon {\mathbb R}^{2} \rightarrow \mathbb R^{2}$, whose coordinates are homogeneous polynomials in $\mathbb R[x, y]$ of degree $2$. These maps send lines passing through the origin into lines passing through the origin. Our goal is to study how these lines are moved under the action of $F$. We show that there is a real analytic variety $\mathcal{F}^{2}$, where two sets can be clearly distinguished. One set $\mathcal{U} \subseteq \mathcal{F}^{2}$ is made up of transformations that have "hidden hyperbolic" dynamics, and its complement $\mathcal{F}^{2} \setminus \mathcal{U}$ contains maps that show a chaotic behavior.
Keywords: polynomial map, circle map, chaotic dynamics.
@article{CHFMJ_2022_7_4_a4,
     author = {J. Jaurez-Rosas and H. M\'endez},
     title = {Dynamics of a family of maps defined by quadratic polynomials},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {447--465},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a4/}
}
TY  - JOUR
AU  - J. Jaurez-Rosas
AU  - H. Méndez
TI  - Dynamics of a family of maps defined by quadratic polynomials
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2022
SP  - 447
EP  - 465
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a4/
LA  - en
ID  - CHFMJ_2022_7_4_a4
ER  - 
%0 Journal Article
%A J. Jaurez-Rosas
%A H. Méndez
%T Dynamics of a family of maps defined by quadratic polynomials
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2022
%P 447-465
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a4/
%G en
%F CHFMJ_2022_7_4_a4
J. Jaurez-Rosas; H. Méndez. Dynamics of a family of maps defined by quadratic polynomials. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 4, pp. 447-465. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a4/

[1] Katok A., Hasselblatt B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[2] Conway J.B., Functions of One Complex Variable, v. I., Springer-Verlag, New York, 1978 | MR

[3] Devaney R., Introduction to Chaotic Dynamical Systems, Benjamin Cummings, Menlo Park, 1986 | MR | Zbl

[4] Block L.S., Coppel W.A., Dynamics in One Dimension, Springer-Verlag, Berlin, Heidelberg, 1992 | MR | Zbl

[5] Brin M., Stuck G., Introduction to Dynamical Systems, Cambridge University Press, Cambridge, 2002 | MR | Zbl

[6] Robinson C., Dynamical Systems, Stability, Symbolic Dynamics, and Chaos, CRC Press, Boca Raton, 1995 | MR | Zbl

[7] Milnor J., Dynamics in One Complex Variable, Princeton University Press, New Jersey, 2006 | MR | Zbl