Quasilinear multi-term equations with Riemann~--- Liouville derivatives of arbitrary orders
Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 4, pp. 434-446.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of a unique local solution of the incomplete Cauchy type problem is proved for a quasilinear equation with several fractional Riemann — Liouville derivatives and with a sectorial tuple of operators at lower derivatives in the linear part in the case of the local Lipschitz continuity of a nonlinear operator with respect to the sum of the norms of graphs of unbounded operators from the equation. In this case, the nonlinear operator depends on the fractional Riemann—Liouville derivatives of lower orders with arbitrary fractional parts. The obtained abstract result is used in the study of an initial boundary value problem for an equation with several fractional derivatives in time.
Keywords: Riemann — Liouville derivative, multi-term fractional differential equation, defect of Cauchy type problem, quasilinear equation.
@article{CHFMJ_2022_7_4_a3,
     author = {M. M. Turov},
     title = {Quasilinear multi-term equations with {Riemann~---} {Liouville} derivatives of arbitrary orders},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {434--446},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a3/}
}
TY  - JOUR
AU  - M. M. Turov
TI  - Quasilinear multi-term equations with Riemann~--- Liouville derivatives of arbitrary orders
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2022
SP  - 434
EP  - 446
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a3/
LA  - ru
ID  - CHFMJ_2022_7_4_a3
ER  - 
%0 Journal Article
%A M. M. Turov
%T Quasilinear multi-term equations with Riemann~--- Liouville derivatives of arbitrary orders
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2022
%P 434-446
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a3/
%G ru
%F CHFMJ_2022_7_4_a3
M. M. Turov. Quasilinear multi-term equations with Riemann~--- Liouville derivatives of arbitrary orders. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 4, pp. 434-446. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a3/

[1] Nakhushev A.M., Fractional Calculus ant Its Applications, Fizmatlit Publ., Moscow, 2003 (In Russ.)

[2] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier Science Publishing, Amsterdam, Boston, Heidelberg, 2006 | MR | Zbl

[3] Tarasov V. E., Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, New York, 2011 | MR

[4] Uchaykin V.V., Fractional derivatives method, Artishok Publ., Ul'yanovsk, 2008 (In Russ.)

[5] Luchko Yu. F., Srivastava H. M., “The exact solution of certain differential equations of fractional order by using operational calculus”, Computers Mathematics with Applications, 29:8 (1995), 73–85 | DOI | MR | Zbl

[6] Hadid S. B., Luchko Yu. F., “An operational method for solving fractional differential equations of an arbitrary real order”, Panamerican Mathematical Journal, 6:1 (1996), 57–73 | MR | Zbl

[7] Ozturk I., “On the theory of fractional differential equation”, Dokl. Adyg. (Cherkes.) Mezhdunar. akademii nauk, 3:1 (1988), 35–39

[8] Pskhu A.V., “Initial-value problem for a linear ordinary differential equation of noninteger order”, Sbornik: Mathematics, 202:4 (2011), 571–582 | DOI | MR | Zbl

[9] Fedorov V.E., Turov M.M., “The defect of a Cauchy type problem for linear equations with several Riemann — Liouville derivatives”, Siberian Mathematical Journal, 62:5 (2021), 925–942 | DOI | MR | Zbl

[10] Fedorov V. E., Du W. S., Turov M. M., “On the unique solvability of incomplete Cauchy type problems for a class of multi-term equations with the Riemann — Liouville derivatives”, Symmetry, 14:1 (2022), 75 | DOI | MR

[11] Fedorov V. E., Turov M. M., “Sectorial tuples of operators and quasilinear fractional equations with multi-term linear part”, Lobachevskii Journal of Mathematics, 43:6 (2022), 1502–1512 | DOI | MR | Zbl

[12] Bajlekova E. G., Fractional Evolution Equations in Banach Spaces, PhD thesis, Eindhoven University of Technology, University Press Facilities, Eindhoven, 2001 | MR | Zbl

[13] Romanova E.A., Fedorov V.E., “Resolving operators of a linear degenerate evolution equation with Caputo derivative. The sectorial case”, Mathematical Notes of NEFU, 23:4 (2016), 58–72 (In Russ.)

[14] Fedorov V.E., Avilovich A.S., “A Cauchy type problem for a degenerate equation with the Riemann — Liouville derivative in the sectorial case”, Siberian Mathematical Journal, 60:2 (2019), 359–372 | DOI | MR | Zbl

[15] Fedorov V. E., Avilovich A. S., Borel L. V., “Initial problems for semilinear degenerate evolution equations of fractional order in the sectorial case”, Springer Proceedings in Mathematics and Statistics, 292 (2019), 41–62 | MR | Zbl

[16] Avilovich A.S., Gordievskikh D.M., Fedorov V.E., “Issues of unique solvability and approximate controllability for linear fractional order equations with a Hölderian right-hand side”, Chelyabinsk Physical and Mathematical Journal, 5:1 (2020), 5–21 (In Russ.) | MR | Zbl

[17] Fedorov V. E., Nagumanova A. V., Avilovich A. S., “A class of inverse problems for evolution equations with the Riemann — Liouville derivative in the sectorial case”, Mathematical Methods in the Applied Sciences, 44:15 (2021), 11961–11969 | DOI | MR | Zbl

[18] Fedorov V. E., Avilovich A. S., “Semilinear fractional-order evolution equations of Sobolev type in the sectorial case”, Complex Variables and Elliptic Equations, 66 (2021), 1108–1121 | DOI | MR | Zbl

[19] Fedorov V. E., Kostić M., “On a class of abstract degenerate multi-term fractional differential equations in locally convex space”, Eurasian Mathematical Journal, 9:3 (2018), 33–57 | DOI | MR | Zbl

[20] Fedorov V.E., Boyko K.V., Phuong T.D., “Initial value problems for some classes of linear evolution equations with several fractional derivatives”, Mathematical Notes of NEFU, 28:3 (2021), 85–104 (In Russ.)

[21] Fedorov V. E., Turov M. M., Kien B. T., “A class of quasilinear equations with Riemann — Liouville derivatives and bounded operators”, Axioms, 11:3 (2022), 96 | DOI

[22] Hassard B.D., Kazarinoff N.D., Wan U.-H., Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, New York, 1981 | MR | Zbl