Green's function of a boundary value problem for a system of ordinary differential fractional order equations
Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 4, pp. 424-433.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper investigates a nonlocal boundary value problem for a linear system of fractional order ordinary differential equations with constant coefficients. The fractional derivative of order $\alpha\in (0,1]$ is understood in the Riemann — Liouville sense. The boundary conditions connect the traces of the fractional integral of the desired vector function at the ends of the segment $[0,l].$ Using the Green's function method, a representation of the solution is obtained, and a theorem on the unique solvability of the boundary value problem under study is proved.
Keywords: system of ordinary differential equations, fractional derivative, nonlocal boundary value problem, Green's function.
@article{CHFMJ_2022_7_4_a2,
     author = {M. O. Mamchuev and T. I. Zhabelova},
     title = {Green's function of a boundary value problem for a system of ordinary differential fractional order equations},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {424--433},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a2/}
}
TY  - JOUR
AU  - M. O. Mamchuev
AU  - T. I. Zhabelova
TI  - Green's function of a boundary value problem for a system of ordinary differential fractional order equations
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2022
SP  - 424
EP  - 433
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a2/
LA  - ru
ID  - CHFMJ_2022_7_4_a2
ER  - 
%0 Journal Article
%A M. O. Mamchuev
%A T. I. Zhabelova
%T Green's function of a boundary value problem for a system of ordinary differential fractional order equations
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2022
%P 424-433
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a2/
%G ru
%F CHFMJ_2022_7_4_a2
M. O. Mamchuev; T. I. Zhabelova. Green's function of a boundary value problem for a system of ordinary differential fractional order equations. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 4, pp. 424-433. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a2/

[1] Nakhushev A.M., Fractional calculus and its application, Fizmatlit Publ., Moscow, 2003 (In Russ.)

[2] Barrett J. H., “Differential equations of non-integer order”, Canadian Journal of Mathematics, 6 (1954), 529–541 | DOI | MR | Zbl

[3] Veber V.K., “The structure of a general solution of the system $y^{(\alpha)} = Ay,$ $0 \alpha \leq 1$”, Proceedings of the Kyrgyz University. Series of mathematical sciences, no. 11, 1976, 26–32 (In Russ.) | Zbl

[4] Veber V.K., “Asymptotic behavior of solutions of a linear system of fractional order differential equations”, Research on integro-differential equations in Kyrgyzstan, 1983, no. 16, 119–125 (In Russ.) | Zbl

[5] Veber V.K, “On the general theory of linear systems with fractional derivatives”, Research on integro-differential equations in Kyrgyzstan, 1985, no. 18, 301–305 (In Russ.)

[6] Veber V.K., “Linear equations with fractional derivatives and constant coefficients in spaces of generalized functions”, Research on integro-differential equations in Kyrgyzstan, 1985, no. 18, 306–312 (In Russ.)

[7] Imanaliev M.I., Veber V.K., “On a generalization of a function of Mittag-Leffler type and its application”, Research on integro-differential equations in Kyrgyzstan, 1980, no. 13, 49–59 (In Russ.) | Zbl

[8] Chikriy A.A., Matichin I.I., “On an analogue of the Cauchy formula for linear systems of any fractional order”, Reports of the National Academy of Sciences of Ukraine, 1 (2007), 53–55 (In Russ.)

[9] Chikriy A. A., Matichin I. I., “Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann — Liouville, Caputo, and Miller — Ross ”, Journal of Automation and Information Sciences, 40:6 (2008), 1–11 | DOI | MR

[10] Matichin I., Onyshchenko V., “Optimal control of linear systems with fractional derivatives”, Fractional Calculus and Applied Analysis, 21:1 (2018), 134–150 | DOI | MR

[11] Matichin I., Onyshchenko V., “Matrix Mittag-Leffler function in fractional systems and its computation”, Bulletin of the Polish Academy of Sciences. Technical Sciences, 66:4 (2018), 495–500

[12] Mamchuev M.O., “Boundary value problem for a system of multidimensional differential equations of fractional order”, Bulletin of the Samara State University. Natural Science Series, 8:2 (67) (2008), 164–175 (In Russ.)

[13] Mamchuev M.O., “Boundary value problem for a multidimensional system of equations with Riemann — Liouville fractional derivatives.”, Siberian Electronic Mathematical Reports, 16 (2019), 732–747 (In Russ.) | MR | Zbl

[14] Mamchuev M.O., Boundary value problems for equations and systems of equations with partial derivatives of fractional order, Kabardino-Balkar Scientific Center, Nal'chik, 2013 (In Russ.)

[15] Mamchuev M. O., “Cauchy problem for a linear system of ordinary differential equations of the fractional order”, Mathematics, 8:9 (2020), 1475 | DOI | MR

[16] Gerasimov A.N., “Generalization of linear deformation laws and its application to problems of internal friction”, Applied Mathematics and Mechanics, 12 (1948), 251–260 (In Russ.) | Zbl

[17] Caputo M., Elasticita e Dissipazione, Zanichelli, Bologna, 1969

[18] Dzhrbashyan M.M., Integral transformations and representations of functions in the complex domain, Nauka Publ., Moscow, 1966 (In Russ.) | MR