Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2022_7_4_a2, author = {M. O. Mamchuev and T. I. Zhabelova}, title = {Green's function of a boundary value problem for a system of ordinary differential fractional order equations}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {424--433}, publisher = {mathdoc}, volume = {7}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a2/} }
TY - JOUR AU - M. O. Mamchuev AU - T. I. Zhabelova TI - Green's function of a boundary value problem for a system of ordinary differential fractional order equations JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2022 SP - 424 EP - 433 VL - 7 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a2/ LA - ru ID - CHFMJ_2022_7_4_a2 ER -
%0 Journal Article %A M. O. Mamchuev %A T. I. Zhabelova %T Green's function of a boundary value problem for a system of ordinary differential fractional order equations %J Čelâbinskij fiziko-matematičeskij žurnal %D 2022 %P 424-433 %V 7 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a2/ %G ru %F CHFMJ_2022_7_4_a2
M. O. Mamchuev; T. I. Zhabelova. Green's function of a boundary value problem for a system of ordinary differential fractional order equations. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 4, pp. 424-433. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a2/
[1] Nakhushev A.M., Fractional calculus and its application, Fizmatlit Publ., Moscow, 2003 (In Russ.)
[2] Barrett J. H., “Differential equations of non-integer order”, Canadian Journal of Mathematics, 6 (1954), 529–541 | DOI | MR | Zbl
[3] Veber V.K., “The structure of a general solution of the system $y^{(\alpha)} = Ay,$ $0 \alpha \leq 1$”, Proceedings of the Kyrgyz University. Series of mathematical sciences, no. 11, 1976, 26–32 (In Russ.) | Zbl
[4] Veber V.K., “Asymptotic behavior of solutions of a linear system of fractional order differential equations”, Research on integro-differential equations in Kyrgyzstan, 1983, no. 16, 119–125 (In Russ.) | Zbl
[5] Veber V.K, “On the general theory of linear systems with fractional derivatives”, Research on integro-differential equations in Kyrgyzstan, 1985, no. 18, 301–305 (In Russ.)
[6] Veber V.K., “Linear equations with fractional derivatives and constant coefficients in spaces of generalized functions”, Research on integro-differential equations in Kyrgyzstan, 1985, no. 18, 306–312 (In Russ.)
[7] Imanaliev M.I., Veber V.K., “On a generalization of a function of Mittag-Leffler type and its application”, Research on integro-differential equations in Kyrgyzstan, 1980, no. 13, 49–59 (In Russ.) | Zbl
[8] Chikriy A.A., Matichin I.I., “On an analogue of the Cauchy formula for linear systems of any fractional order”, Reports of the National Academy of Sciences of Ukraine, 1 (2007), 53–55 (In Russ.)
[9] Chikriy A. A., Matichin I. I., “Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann — Liouville, Caputo, and Miller — Ross ”, Journal of Automation and Information Sciences, 40:6 (2008), 1–11 | DOI | MR
[10] Matichin I., Onyshchenko V., “Optimal control of linear systems with fractional derivatives”, Fractional Calculus and Applied Analysis, 21:1 (2018), 134–150 | DOI | MR
[11] Matichin I., Onyshchenko V., “Matrix Mittag-Leffler function in fractional systems and its computation”, Bulletin of the Polish Academy of Sciences. Technical Sciences, 66:4 (2018), 495–500
[12] Mamchuev M.O., “Boundary value problem for a system of multidimensional differential equations of fractional order”, Bulletin of the Samara State University. Natural Science Series, 8:2 (67) (2008), 164–175 (In Russ.)
[13] Mamchuev M.O., “Boundary value problem for a multidimensional system of equations with Riemann — Liouville fractional derivatives.”, Siberian Electronic Mathematical Reports, 16 (2019), 732–747 (In Russ.) | MR | Zbl
[14] Mamchuev M.O., Boundary value problems for equations and systems of equations with partial derivatives of fractional order, Kabardino-Balkar Scientific Center, Nal'chik, 2013 (In Russ.)
[15] Mamchuev M. O., “Cauchy problem for a linear system of ordinary differential equations of the fractional order”, Mathematics, 8:9 (2020), 1475 | DOI | MR
[16] Gerasimov A.N., “Generalization of linear deformation laws and its application to problems of internal friction”, Applied Mathematics and Mechanics, 12 (1948), 251–260 (In Russ.) | Zbl
[17] Caputo M., Elasticita e Dissipazione, Zanichelli, Bologna, 1969
[18] Dzhrbashyan M.M., Integral transformations and representations of functions in the complex domain, Nauka Publ., Moscow, 1966 (In Russ.) | MR