Examples of generalized elementary solutions in linear inverse problems
Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 4, pp. 395-411.

Voir la notice de l'article provenant de la source Math-Net.Ru

One fragment from the theory of inverse problems for second-order abstract differential equations is presented in detail. We consider a spectral problem which related to a linear inverse problem with parameters in the final condition. It is shown that eigenvalues of the spectral problem is expressed through zeros of an elementary entire function. For certain combinations of the parameters, some zeros can be multiples with multiplicity two. Then it is possible to appear generalized elementary solutions for the inverse problem. Explicit formulas for such solutions are given. We provide specific examples of inverse problems where general ideas are put into the practice.
Keywords: abstract differential equation of the second order, inverse problem, spectral problem, multiple zeros of characteristic function, generalized elementary solutions of inverse problem.
@article{CHFMJ_2022_7_4_a0,
     author = {M. Al-Mohamed and I. V. Tikhonov},
     title = {Examples of generalized elementary solutions in linear inverse problems},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {395--411},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a0/}
}
TY  - JOUR
AU  - M. Al-Mohamed
AU  - I. V. Tikhonov
TI  - Examples of generalized elementary solutions in linear inverse problems
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2022
SP  - 395
EP  - 411
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a0/
LA  - ru
ID  - CHFMJ_2022_7_4_a0
ER  - 
%0 Journal Article
%A M. Al-Mohamed
%A I. V. Tikhonov
%T Examples of generalized elementary solutions in linear inverse problems
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2022
%P 395-411
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a0/
%G ru
%F CHFMJ_2022_7_4_a0
M. Al-Mohamed; I. V. Tikhonov. Examples of generalized elementary solutions in linear inverse problems. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 4, pp. 395-411. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a0/

[1] Tikhonov I.V., Eidelman Yu.S., “An inverse problem for a differential equation in a Banach space and the distribution of zeros of an entire Mittag-Leffler function”, Differential Equations, 38:5 (2002), 669–677 | DOI | MR | Zbl

[2] Tikhonov I.V., “Uniqueness theorems for linear non-local problems for abstract differential equations”, Izvestiya Mathematics, 67:2 (2003), 333–363 | DOI | MR | Zbl

[3] Tikhonov I.V., Eidelman Yu.S., “Uniqueness criterion in an inverse problem for an abstract differential equation with nonstationary inhomogeneous term”, Mathematical Notes, 77:2 (2005), 246–262 | DOI | MR | Zbl

[4] Tikhonov I.V., “A generalized Ward problem for abstract differential equations”, Differential Equations, 41:3 (2005), 340–351 | DOI | MR | Zbl

[5] Tikhonov I.V., Inverse, nonlocal and boundary value problems for evolution equations, Doctoral Dissertation, The Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow, 2008 (In Russ.)

[6] Almohamed M., Tikhonov I.V., “On some spectral studies related to inverse problem theory”, Modern problems of the function theory and their applications, Saratov State University, Saratov, 2022, 20–26 (In Russ.)

[7] Tikhonov I.V., Sherstyukov V.B., Almohamed M., “On some transcendental equations that matter for mathematical physics”, Modern problems of the function theory and their applications, 2022, 294–299, Saratov State University, Saratov (In Russ.)

[8] Denisov A.M., Elements of the Theory of Inverse Problems, 1999, De Gruyter | MR

[9] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New-York, Basel, 2000 | MR | Zbl

[10] Tikhonov I.V., Almohamed M., “Inverse problem with overdetermination of the third type for a second-order abstract differential equation”, Differential equations, 58:7 (2022), 890–911 (In Russ.) | Zbl

[11] Almohamed M., “Uniqueness criterion for linear inverse problem with the final over-determination of the second type”, Proceeding of Voronezh State University. Ser.: Physics. Mathematics, 2019, no. 3, 50–58 (In Russ.)

[12] Titchmarsh E.C., The Theory of Functions, Second edition, Oxford University Press, London, 1936 | MR | MR

[13] Levin B.Ja., Distribution of Zeros of Entire Functions, Revised edition, American Mathematical Society, 1980 | MR

[14] Hardy G. H., “On the zeroes of integral function $x-\sin x=\sum_1^\infty\,(-)^{n-1}\,\frac{x^{2n+1}}{\,2n+1\hskip1pt !\,}$ ”, The Messenger of Math, 31:11 (1902), 161–165

[15] Functional analysis, Reference Mathematical Library, Second edition, revised and expanded, ed. Krein S.G., Nauka Publ., Moscow, 1972 (In Russ.)

[16] Il'in V.A., “Necessary and sufficient conditions for a subsystem of the eigen- and associated functions of a Keldysh bundle of ordinary differential operators to be a basis”, Sov. Math., Dokl., 17 (1976), 513–516 | MR | Zbl

[17] Il'in V.A., “Existence of a reduced system of eigen- and associated functions for a non-selfadjoint ordinary differential operator”, Proceedings of Steklov Institute of Mathematics, 142 (1979), 157–164 | Zbl

[18] Ionkin N.I., “Solution of some heat conduction problem with a non-classical boundary condition”, Differential equation, 13:2 (1977), 294–304 (In Russ.) | MR