Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2022_7_4_a0, author = {M. Al-Mohamed and I. V. Tikhonov}, title = {Examples of generalized elementary solutions in linear inverse problems}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {395--411}, publisher = {mathdoc}, volume = {7}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a0/} }
TY - JOUR AU - M. Al-Mohamed AU - I. V. Tikhonov TI - Examples of generalized elementary solutions in linear inverse problems JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2022 SP - 395 EP - 411 VL - 7 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a0/ LA - ru ID - CHFMJ_2022_7_4_a0 ER -
M. Al-Mohamed; I. V. Tikhonov. Examples of generalized elementary solutions in linear inverse problems. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 4, pp. 395-411. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a0/
[1] Tikhonov I.V., Eidelman Yu.S., “An inverse problem for a differential equation in a Banach space and the distribution of zeros of an entire Mittag-Leffler function”, Differential Equations, 38:5 (2002), 669–677 | DOI | MR | Zbl
[2] Tikhonov I.V., “Uniqueness theorems for linear non-local problems for abstract differential equations”, Izvestiya Mathematics, 67:2 (2003), 333–363 | DOI | MR | Zbl
[3] Tikhonov I.V., Eidelman Yu.S., “Uniqueness criterion in an inverse problem for an abstract differential equation with nonstationary inhomogeneous term”, Mathematical Notes, 77:2 (2005), 246–262 | DOI | MR | Zbl
[4] Tikhonov I.V., “A generalized Ward problem for abstract differential equations”, Differential Equations, 41:3 (2005), 340–351 | DOI | MR | Zbl
[5] Tikhonov I.V., Inverse, nonlocal and boundary value problems for evolution equations, Doctoral Dissertation, The Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow, 2008 (In Russ.)
[6] Almohamed M., Tikhonov I.V., “On some spectral studies related to inverse problem theory”, Modern problems of the function theory and their applications, Saratov State University, Saratov, 2022, 20–26 (In Russ.)
[7] Tikhonov I.V., Sherstyukov V.B., Almohamed M., “On some transcendental equations that matter for mathematical physics”, Modern problems of the function theory and their applications, 2022, 294–299, Saratov State University, Saratov (In Russ.)
[8] Denisov A.M., Elements of the Theory of Inverse Problems, 1999, De Gruyter | MR
[9] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New-York, Basel, 2000 | MR | Zbl
[10] Tikhonov I.V., Almohamed M., “Inverse problem with overdetermination of the third type for a second-order abstract differential equation”, Differential equations, 58:7 (2022), 890–911 (In Russ.) | Zbl
[11] Almohamed M., “Uniqueness criterion for linear inverse problem with the final over-determination of the second type”, Proceeding of Voronezh State University. Ser.: Physics. Mathematics, 2019, no. 3, 50–58 (In Russ.)
[12] Titchmarsh E.C., The Theory of Functions, Second edition, Oxford University Press, London, 1936 | MR | MR
[13] Levin B.Ja., Distribution of Zeros of Entire Functions, Revised edition, American Mathematical Society, 1980 | MR
[14] Hardy G. H., “On the zeroes of integral function $x-\sin x=\sum_1^\infty\,(-)^{n-1}\,\frac{x^{2n+1}}{\,2n+1\hskip1pt !\,}$ ”, The Messenger of Math, 31:11 (1902), 161–165
[15] Functional analysis, Reference Mathematical Library, Second edition, revised and expanded, ed. Krein S.G., Nauka Publ., Moscow, 1972 (In Russ.)
[16] Il'in V.A., “Necessary and sufficient conditions for a subsystem of the eigen- and associated functions of a Keldysh bundle of ordinary differential operators to be a basis”, Sov. Math., Dokl., 17 (1976), 513–516 | MR | Zbl
[17] Il'in V.A., “Existence of a reduced system of eigen- and associated functions for a non-selfadjoint ordinary differential operator”, Proceedings of Steklov Institute of Mathematics, 142 (1979), 157–164 | Zbl
[18] Ionkin N.I., “Solution of some heat conduction problem with a non-classical boundary condition”, Differential equation, 13:2 (1977), 294–304 (In Russ.) | MR