On a simple pursuit problem on time scales of two coordinated evaders
Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 3, pp. 277-286.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the finite-dimensional Euclidean space, the problem of simple pursuit of two evaders by a group of pursuers is considered, described by equations on a given time scale. It is assumed that all evaders use the same control. The pursuers use counterstrategies based on information about the initial positions and the control history of the evaders. The set of admissible controls is a unit ball centered at zero, target sets are the origin. The goal of the pursuers' group is to capture at least one evader by two pursuers or to capture two evaders. In terms of initial positions and game parameters a sufficient condition for the capture is obtained. In the study, the method of resolving functions is used as a basic one, which allows obtaining sufficient conditions for the solvability of the approach problem in some guaranteed time.
Keywords: differential game, group pursuit, evader, pursuer, time scale.
@article{CHFMJ_2022_7_3_a1,
     author = {N. N. Petrov and E. S. Mozhegova},
     title = {On a simple pursuit problem on time scales of two coordinated evaders},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {277--286},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a1/}
}
TY  - JOUR
AU  - N. N. Petrov
AU  - E. S. Mozhegova
TI  - On a simple pursuit problem on time scales of two coordinated evaders
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2022
SP  - 277
EP  - 286
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a1/
LA  - ru
ID  - CHFMJ_2022_7_3_a1
ER  - 
%0 Journal Article
%A N. N. Petrov
%A E. S. Mozhegova
%T On a simple pursuit problem on time scales of two coordinated evaders
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2022
%P 277-286
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a1/
%G ru
%F CHFMJ_2022_7_3_a1
N. N. Petrov; E. S. Mozhegova. On a simple pursuit problem on time scales of two coordinated evaders. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 3, pp. 277-286. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a1/

[1] Krasovskii N.N., Subbotin A.I., Positional differential games, Nauka Publ., Moscow, 1974 (In Russ.) | MR

[2] Subbotin A.I., Chentsov A.G., Guarantee optimization in control problems, Nauka Publ., Moscow, 1981 (In Russ.) | MR

[3] Pontryagin L.S., Selected scientific works, v. 2, Nauka Publ., Moscow, 1988 (In Russ.)

[4] Chikrii A.A., Conflict-controlled processes, Kluwer Acad. Publ., Boston, London, Dordrecht, 1997 | MR | Zbl

[5] Grigorenko N.L., Mathematical methods of control a few dynamic processes, Moscow State University, Moscow, 1990 (In Russ.)

[6] Blagodatskikh A.I., Petrov N.N., Conflict interaction of groups of controlled objects, Udmurt State University, Izhevsk, 2009 (In Russ.)

[7] Aulbach B., Hilger S., “Linear dynamic processes with inhomogeneous time scale”, Nonlinear Dynamics and Quantum Dynamical Systems, 59 (1990), 9–20 | DOI | MR | Zbl

[8] Hilger S., “Analysis on measure chains — a unified approach to continuous and discrete calculus”, Results in Mathematics, 18 (1990), 18–56 | DOI | MR | Zbl

[9] Benchohra M., Henderson J., Ntouyas S., Impulsive Differential Equations and Inclusions, Hindawi Publishing, New York, 2006 | MR | Zbl

[10] Bohner M., Peterson A., Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003 | MR | Zbl

[11] Martins N., Torres D., “Necessary conditions for linear noncooperative $N$-player delta differential games on time scales”, Discussiones Mathematicae, Differential Inclusions, Control and Optimization, 31:1 (2011), 23–37 | DOI | MR | Zbl

[12] Petrov N.N., “The problem of simple group pursuit with phase constraints in time scales”, Vestnik Udmurtskogo Universiteta: Matematika, Mekhanika, Komp'yuternye Nauki, 30:2 (2020), 249–258 (In Russ.) | MR | Zbl

[13] Petrov N.N., “Matrix resolving functions in a linear problem of group pursuit with multiple capture”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 27, no. 2, 2021, 185–196 (In Russ.)

[14] Guseinov G. S., “Integration on time scales”, Journal of Mathematical Analysis and Applications, 285:1 (2003), 107–127 | DOI | MR | Zbl

[15] Cabada A., Vivero D. R., “Expression of the Lebesgue $\Delta$-integral on time scales as a usual Lebesgue integral; application to the calculus of $\Delta$-antiderivatives”, Mathematical and Computer Modelling, 43:1–2 (2006), 194–207 | DOI | MR | Zbl

[16] Petrov N.N., “About controllability of autonomous systems”, Differential equations, 4, no. 4 (1968), 606–617 (In Russ.) | Zbl