On some class of the pseudohyperbolic equations with an unknown coefficient
Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 2, pp. 164-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the inverse problems with an unknown coefficient $a$ for a pseudohyperbolic equation $u_{tt}-\Delta u-\Delta u_{tt}+au=f(x,t)$ and investigate the solvability of the problem. We prove the theorems of the existence of the problem's regular solutions. The distinctiveness of the problems is a presence of new overdetermination conditions for the considered class of equations.
Keywords: pseudohyperbolic equation, unknown coefficient, inverse problem, integral overdetermination, regular solution, existence.
@article{CHFMJ_2022_7_2_a3,
     author = {A. I. Kozhanov and R. R. Safiullova},
     title = {On some class of the pseudohyperbolic equations with an unknown coefficient},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {164--180},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a3/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - R. R. Safiullova
TI  - On some class of the pseudohyperbolic equations with an unknown coefficient
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2022
SP  - 164
EP  - 180
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a3/
LA  - ru
ID  - CHFMJ_2022_7_2_a3
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A R. R. Safiullova
%T On some class of the pseudohyperbolic equations with an unknown coefficient
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2022
%P 164-180
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a3/
%G ru
%F CHFMJ_2022_7_2_a3
A. I. Kozhanov; R. R. Safiullova. On some class of the pseudohyperbolic equations with an unknown coefficient. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 2, pp. 164-180. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a3/

[1] Voyt S.S., “A distribution of the initial consolidations in the viscous gas”, Scientists Notes of MSU. Ser.: Mechanics, 4:172 (1954), 125–142 (In Russ.)

[2] Longren K., Skott E., Solitions in action, Mir Publ., Moscow, 1981 (In Russ.)

[3] Kirichenko S.V., Nonlocal problems with integral conditions for the hyperbolic, pseudohyperbolic and mixed type equations, PhD Thesis, Samara, 2014 (In Russ.)

[4] Kozhanov A.I., Theorems of the comparisons and the existence of the boundary-value problems for some classes of pseudoparabolic and pseudohyperbolic evolutionary equations, Novosibirsk, 1990 (In Russ.)

[5] Kozhanov A.I., “Pseudohyperbolic and hyperbolic equations with growing younger members”, Bulletin of Chelyabinsk State University. Ser.: Mathematics. Mechanics. Physics, 1999, no. 5, 31–47 (In Russ.)

[6] Pulkina L. S., “Solution to nonlocal problems of pseudohyperbolic equations”, Electronic Journal of Differential Equations, 2012:116 (2012), 1–9 | MR

[7] Azizbekov E., A mixed problem for nonlinear pseudohyperbolic equations, LAP Lambert Academic Publishing, 2015 (In Russ.)

[8] Demidenko G.V., “Solvability conditions of the Cauchy problem for pseudohyperbolic equations”, Siberian Mathematical Journal, 56:6 (2015), 1028–1041 (In Russ.) | MR | Zbl

[9] Popov N.S., “On solvability of nonlocal boundary-value problems for one-dimensional pseudoparabolic and pseudohyperbolic equations”, Bulletin of Samara State University, 2015, no. 3 (125), 29–43 (In Russ.)

[10] Pul'kina L.S., “A problem with dynamic nonlocal condition for pseudohyperbolic equation”, Russian Mathematics, 60:9 (2016), 38–45 | DOI | MR | Zbl

[11] Lavrent'ev M.M., Romanov V.G., Vasil'ev V.G., Multidimensional inverse problems for differential equations, Nauka Publ., Novosibirsk, 1969 (In Russ.) | MR

[12] Romanov V.G., Inverse problems of mathematical physics, Nauka Publ., Moscow, 1989 (In Russ.) | MR

[13] Romanov V.G., Kabanikhin S.I., Inverse problems of geophysics, Nauka Publ., Moscow, 1991 (In Russ.) | MR

[14] Denisov A.M., Introduction to the theory of inverse problems, Lomonosov Moscow State University, Moscow, 1994 (In Russ.)

[15] Kozhanov A. I., Composite Type Equations and Inverse Problems, VSP, Utrecht, 1999 | MR | Zbl

[16] Kabanikhin S.I., Inverse and ill-posed problems, Siberian Book Publ., Novosibirsk, 2009 (In Russ.)

[17] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, Inc., New York, 1999 | MR

[18] Belov Yu. Ya., Inverse Problems for Partial Differntial Equations, VSP, Utrecht, 2002 | MR

[19] Kozhanov A.I., “Nonlinear and loaded equations and inverse problems”, Computational mathematics and mathematical physics, 44:4 (2004), 694–716 (In Russ.) | MR | Zbl

[20] Kozhanov A.I., “A nonlinear loaded parabolic equation and a related inverse problem”, Mathematical Notes, 76:6 (2004), 784–795 (In Russ.) | Zbl

[21] Pyatkov S. G., “On some classes of inverse problems for parabolic equations”, Journal of Inverse and Ill-Posed Problems, 18:8 (2011), 917–934 | DOI | MR

[22] Lorenzi A., Mola G., “Recovering the reaction and the diffusion coefficients in a linear parabolic equation”, Inverse Problems, 28:7 (2012), 075006 | DOI | MR | Zbl

[23] Kamynin V.L., “The inverse problem of determining the lower-order coefficient in parabolic equations with integral observation”, Mathematical Notes, 94:2 (2013), 205–213 | DOI | MR | Zbl

[24] Pyatkov S.G., “On some classes of inverse problems with overdetermination data on spatial manifolds”, Siberian Mathematical Journal, 57:5 (2016), 870–880 | DOI | MR | Zbl

[25] Anikonov Yu.E., “Formulas for solvability some inverse problems for evolutionary equations”, Reports of the academy of sciences, 319:5 (1991), 1117–1119 (In Russ.) | Zbl

[26] Amirov A.H., “Multidimensional inverse problem for hyperbolic equation and the spectral problem”, Reports of the USSR Academy of Sciences, 319:2 (1991), 265–266 (In Russ.) | Zbl

[27] Lorenzi A., Paparoni E., “Identifications of two unknown coefficients in an integro-differential hyperbolic equation”, Journal of Inverse and Ill-Posed Problems, 1:4 (1993), 331–348 | DOI | MR | Zbl

[28] Kozhanov A. I., Safiullova R. R., “Linear inverse problems for parabolic and hyperbolic equations”, Journal of Inverse and Ill-Posed Problems, 18:1 (2010), 1–18 | DOI | MR | Zbl

[29] Kozhanov A.I., Safiullova R.R., “Determination of parameters in telegraph equation”, Ufa Mathematical journal, 9:1 (2017), 62–74 | DOI | MR | Zbl

[30] Kozhanov A. I., “Hyperbolic equations with unknown coefficients”, Symmetry, 12:9 (2020), 1539 | DOI

[31] Lorenzi A., Paparoni E., “Identification problems for pseudohyperbolic integrodifferential operetor equation”, Journal of Inverse and Ill-Posed Problems, 5:19 (1993), 523–548 | MR

[32] Asanov A.R., Inverse problems for pseudohyperbolic equations, PhD thesis, Bishkek, 1994 (In Russ.)

[33] Megraliev Ya.T., “On solvability of the inverse problem for the fourth order pseudohyperbolic equation with additional integral condition”, News of universities. Volga region. Ser. Physical and mathematical sciences, 2013, no. 1, 19–33 (In Russ.) | MR

[34] Kurmanbaeva A.K., “Linear inverse problems for pseudohyperbolic equations”, Educational resources and technologies, 2016, no. 2, 343–351 (In Russ.)

[35] Lorenzi A., Mola G., “Identification of a real constant in linear evolution equation in a Hilbert spaces”, Inverse Problems Imaging, 5:3 (2011), 695–714 | DOI | MR | Zbl

[36] Nakhushev A.M., Loaded equations and the applications, Nauka Publ., Moscow, 2012 (In Russ.)

[37] Kozhanov A.I., To the theory of composite type equations, PhD thesis, Novosibirsk, 1993 (In Russ.)

[38] Sobolev S.L., Some Applications of Functional Analysis in Mathematical Physics, American Mathematical Society, Providence, Rhode Island, 2008 | MR | MR

[39] Ladyzhenskaya O., Ural'tseva N., Linear and Quasi-Linear Elliptic Equations, Academic Press, New York, 1968 | MR | MR

[40] Trenogin V.A., Functional analysis, Nauka Publ., Moscow, 1980 (In Russ.) | MR