Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2022_7_2_a2, author = {A. V. Zhurba and S. D. Baboshin and T. I. Kostina and P. Raynaud de Fitte}, title = {On the mathematical model of the process of impulsive vibration driving process and its stability}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {152--163}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a2/} }
TY - JOUR AU - A. V. Zhurba AU - S. D. Baboshin AU - T. I. Kostina AU - P. Raynaud de Fitte TI - On the mathematical model of the process of impulsive vibration driving process and its stability JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2022 SP - 152 EP - 163 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a2/ LA - ru ID - CHFMJ_2022_7_2_a2 ER -
%0 Journal Article %A A. V. Zhurba %A S. D. Baboshin %A T. I. Kostina %A P. Raynaud de Fitte %T On the mathematical model of the process of impulsive vibration driving process and its stability %J Čelâbinskij fiziko-matematičeskij žurnal %D 2022 %P 152-163 %V 7 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a2/ %G ru %F CHFMJ_2022_7_2_a2
A. V. Zhurba; S. D. Baboshin; T. I. Kostina; P. Raynaud de Fitte. On the mathematical model of the process of impulsive vibration driving process and its stability. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 2, pp. 152-163. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a2/
[1] Ermolenko V.N., “Innovative solutions for pile foundation construction”, Stroyprofil', 2010, no. 6 (84), 20–22 (In Russ.)
[2] Ermolenko V.N., Nasonov I.V., Surovtsev I.S., General-Purpose Identation Device, Patent RF, no. 2388868, 2009
[3] Ermolenko V.N., Kostin V.A., Kostin D.V., Sapronov Yu.I., “Optimization of a polyharmonic impulse”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2012, no. 13, 27 (286), 35–44 (In Russ.) | Zbl
[4] Kostin V.A., Kostin D.V., Sapronov Yu.I., “Maxwell — Fejer polynomials and optimization of polyharmonic impulse”, Doklady Mathematics, 86:1 (2012), 512–514 | DOI | MR | Zbl
[5] Kostin D.V., Kostina T.I., Baboshin S.D., “Numerical simulation of the pile driving process”, Modern Methods of Function Theory and Related Problems, Voronezh State University, Voronezh, 2019, 173–174 (In Russ.)
[6] Kostin D.V., Myznikov A.S., Zhurba A.V., Utkin A.A., The program of work of the impulse plunger, The Certificate on Official Registration of the Computer Program, no. 2020667045, 2020 (In Russ.)
[7] Kostin D.V., “Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient”, Sbornik: Mathematics, 207:12 (2016), 1709–1728 | DOI | MR | Zbl
[8] Yakovleva T.B., Krysko A.V.-jr, Krysko A.V., “Nonlinear dynamics of the contact interaction of a three-layer plate-beam nanostructure in a white noise field”, Dynamics of Systems, Mechanisms and Machines, 6:2 (2018), 294–300 (In Russ.)
[9] Kostin D.V., Kostina T.I., Zhurba A.V., Myznikov A.S., “The nonlinear mathematical model of the impulse pile driver”, Chelyabinsk Physical and Mathematical Journal, 6:1 (2021), 34–41 | MR | Zbl