On the mathematical model of the process of impulsive vibration driving process and its stability
Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 2, pp. 152-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of the functioning of the impulse pile driver consists of models of the operation of the impulse pile driver itself, a model of the interaction of the pile element with the soil in a form of the friction force of the side surface and frontal resistance, which are phenomenological. The process of operation of the impulse pile driver is described using the Maxwell — Fejer series, and its optimality in terms of the asymmetry coefficient has been rigorously proven. At the same time, when using optimal ratios in the design, tolerances are mandatory, which are inevitable in the production of elements. These imperfections disrupt the shape of the optimal pulse. A problem arises of studying the dependence of the impulse on deviations in parameters and estimating admissible values of these deviations. For this, a software implementation of the mathematical model of the process of functioning of the impulse pile driver was used, which formed a basis of a numerical experiment. The article presents the characteristic results of the experiment and their analysis.
Keywords: mathematical modeling, pile-driving vibration loader, impulse driver, asymmetry coefficient.
@article{CHFMJ_2022_7_2_a2,
     author = {A. V. Zhurba and S. D. Baboshin and T. I. Kostina and P. Raynaud de Fitte},
     title = {On the mathematical model of the process of impulsive vibration driving process and its stability},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {152--163},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a2/}
}
TY  - JOUR
AU  - A. V. Zhurba
AU  - S. D. Baboshin
AU  - T. I. Kostina
AU  - P. Raynaud de Fitte
TI  - On the mathematical model of the process of impulsive vibration driving process and its stability
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2022
SP  - 152
EP  - 163
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a2/
LA  - ru
ID  - CHFMJ_2022_7_2_a2
ER  - 
%0 Journal Article
%A A. V. Zhurba
%A S. D. Baboshin
%A T. I. Kostina
%A P. Raynaud de Fitte
%T On the mathematical model of the process of impulsive vibration driving process and its stability
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2022
%P 152-163
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a2/
%G ru
%F CHFMJ_2022_7_2_a2
A. V. Zhurba; S. D. Baboshin; T. I. Kostina; P. Raynaud de Fitte. On the mathematical model of the process of impulsive vibration driving process and its stability. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 2, pp. 152-163. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a2/

[1] Ermolenko V.N., “Innovative solutions for pile foundation construction”, Stroyprofil', 2010, no. 6 (84), 20–22 (In Russ.)

[2] Ermolenko V.N., Nasonov I.V., Surovtsev I.S., General-Purpose Identation Device, Patent RF, no. 2388868, 2009

[3] Ermolenko V.N., Kostin V.A., Kostin D.V., Sapronov Yu.I., “Optimization of a polyharmonic impulse”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2012, no. 13, 27 (286), 35–44 (In Russ.) | Zbl

[4] Kostin V.A., Kostin D.V., Sapronov Yu.I., “Maxwell — Fejer polynomials and optimization of polyharmonic impulse”, Doklady Mathematics, 86:1 (2012), 512–514 | DOI | MR | Zbl

[5] Kostin D.V., Kostina T.I., Baboshin S.D., “Numerical simulation of the pile driving process”, Modern Methods of Function Theory and Related Problems, Voronezh State University, Voronezh, 2019, 173–174 (In Russ.)

[6] Kostin D.V., Myznikov A.S., Zhurba A.V., Utkin A.A., The program of work of the impulse plunger, The Certificate on Official Registration of the Computer Program, no. 2020667045, 2020 (In Russ.)

[7] Kostin D.V., “Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient”, Sbornik: Mathematics, 207:12 (2016), 1709–1728 | DOI | MR | Zbl

[8] Yakovleva T.B., Krysko A.V.-jr, Krysko A.V., “Nonlinear dynamics of the contact interaction of a three-layer plate-beam nanostructure in a white noise field”, Dynamics of Systems, Mechanisms and Machines, 6:2 (2018), 294–300 (In Russ.)

[9] Kostin D.V., Kostina T.I., Zhurba A.V., Myznikov A.S., “The nonlinear mathematical model of the impulse pile driver”, Chelyabinsk Physical and Mathematical Journal, 6:1 (2021), 34–41 | MR | Zbl