Characterization of generalized periodic vector fields on hyperbolic space
Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 2, pp. 139-151

Voir la notice de l'article provenant de la source Math-Net.Ru

We study vector fields which have zero flux through every sphere of fixed radius in a ball on a real hyperbolic space. For fields in such classes a description in the form of a series in special functions is obtained.
Keywords: vector field, hyperbolic space, zero spherical mean, spherical harmonic, Horn hypergeometric series.
@article{CHFMJ_2022_7_2_a1,
     author = {N. P. Volchkova and Vit. V. Volchkov},
     title = {Characterization of generalized periodic vector fields on hyperbolic space},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {139--151},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a1/}
}
TY  - JOUR
AU  - N. P. Volchkova
AU  - Vit. V. Volchkov
TI  - Characterization of generalized periodic vector fields on hyperbolic space
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2022
SP  - 139
EP  - 151
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a1/
LA  - ru
ID  - CHFMJ_2022_7_2_a1
ER  - 
%0 Journal Article
%A N. P. Volchkova
%A Vit. V. Volchkov
%T Characterization of generalized periodic vector fields on hyperbolic space
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2022
%P 139-151
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a1/
%G ru
%F CHFMJ_2022_7_2_a1
N. P. Volchkova; Vit. V. Volchkov. Characterization of generalized periodic vector fields on hyperbolic space. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 2, pp. 139-151. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a1/