Characterization of generalized periodic vector fields on hyperbolic space
Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 2, pp. 139-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study vector fields which have zero flux through every sphere of fixed radius in a ball on a real hyperbolic space. For fields in such classes a description in the form of a series in special functions is obtained.
Keywords: vector field, hyperbolic space, zero spherical mean, spherical harmonic, Horn hypergeometric series.
@article{CHFMJ_2022_7_2_a1,
     author = {N. P. Volchkova and Vit. V. Volchkov},
     title = {Characterization of generalized periodic vector fields on hyperbolic space},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {139--151},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a1/}
}
TY  - JOUR
AU  - N. P. Volchkova
AU  - Vit. V. Volchkov
TI  - Characterization of generalized periodic vector fields on hyperbolic space
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2022
SP  - 139
EP  - 151
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a1/
LA  - ru
ID  - CHFMJ_2022_7_2_a1
ER  - 
%0 Journal Article
%A N. P. Volchkova
%A Vit. V. Volchkov
%T Characterization of generalized periodic vector fields on hyperbolic space
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2022
%P 139-151
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a1/
%G ru
%F CHFMJ_2022_7_2_a1
N. P. Volchkova; Vit. V. Volchkov. Characterization of generalized periodic vector fields on hyperbolic space. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 2, pp. 139-151. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a1/

[1] Ungar P., “Freak theorem about functions on a sphere”, Journal of the London Mathematical Society, 29:2 (1954), 100–103 | DOI | MR | Zbl

[2] John F., Plane Waves and Spherical Means Applied to Partial Differential Equations, Dover Publ., New York, 2013 | MR

[3] Delsarte J., “Note sur une propriété nouvelle des fonctions harmoniques”, Comptes Rendus de l'Académie des Sciences. Paris Sér. A–B., 246 (1958), 1358–1360 | MR | Zbl

[4] Schneider R., “Functions on a sphere with vanishing integrals over certain subspheres”, Journal of Mathematical Analysis and Applications, 26 (1969), 381–384 | DOI | MR | Zbl

[5] Smith J., “Harmonic analysis of scalar and vector fields in $\mathbb{R}^n$”, Mathematical Proceedings of the Cambridge Philosophical Society, 72 (1972), 403–416 | DOI | MR | Zbl

[6] Berenstein C.A., Struppa D.C., “Complex analysis and convolution equations”, Several complex variables, v. Complex analysis in partial differential equations and mathematical physics, Springer-Verlag, Berlin, 1993, 1–108

[7] Berenstein K. A., Gay R., Yger A., “Inversion of the local Pompeiu transform”, Journal d'Analyse Mathématique, 54 (1990), 259–287 | DOI | MR | Zbl

[8] Zalcman L., “A bibliographic survey of the Pompeiu problem”, Approximation by Solutions of Partial DifferentialEquations, Kluwer, Dordrecht, 1992, 185–194 | DOI | MR

[9] Netuka I., “Mean value property and harmonic functions”, Classical and Modern Potential Theory and Applications, 1994, 359–398, Kluwer, Dordrecht | DOI | MR | Zbl

[10] Thangavelu S., “Spherical means and $\mathrm{CR}$ functions on the Heisenberg group”, Journal d'Analyse Mathématique, 63 (1994), 255–286 | DOI | MR | Zbl

[11] Volchkov V.V., “A definitive version of the local two-radii theorem”, Sbornik Mathematics, 186:6 (1995), 783–802 | DOI | MR | Zbl

[12] Volchkov V.V., “Solution of the support problem for several function classes”, Sbornik Mathematics, 188:9 (1997), 1279–1294 | DOI | MR | Zbl

[13] Berkani M., El Harchaoui M., Gay R., “Inversion de la transformation de Pompéiu locale dans l{'}espace hyperbolique quaternique — Cas des deux boules”, Journal of Complex Variables, 43 (2000), 29–57 | MR | Zbl

[14] Volchkov Vit.V., Volchkova N.P., “Inversion of the local Pompeiu transform on the quaternion hyperbolic space”, Doklady Mathematics, 64:1 (2001), 90–93 | MR | Zbl

[15] Zalcman L., “Supplementary bibliography to “A bibliographic survey of the Pompeiu problem””, Contempemporery Mathematics. Radon Transform and Tomography, 278 (2001), 69–74 | DOI | MR | Zbl

[16] Volchkov Vit.V., Volchkova N.P., “Inversion theorems for the local Pompeiu transformation in the quaternion hyperbolic space”, St. Petersburg Mathematical Journal, 15:5 (2004), 753–771 | DOI | MR | Zbl

[17] Volchkov V. V., Integral Geometry and Convolution Equations, Kluwer Academic Publishers, Dordrecht, 2003 | MR | Zbl

[18] Volchkov V. V., Volchkov Vit. V., Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group, Springer-Verlag, London, 2009 | MR | Zbl

[19] Volchkov V. V., Volchkov Vit. V., Offbeat Integral Geometry on Symmetric Spaces, Birkhäuser, Basel, 2013 | MR | Zbl

[20] Volchkov Vit.V., Volchkova N.P., “The removability problem for functions with zero spherical means”, Siberian Mathematical Journal, 58:3 (2017), 419–426 | DOI | MR | Zbl

[21] Volchkov V.V., Volchkov Vit.V., “Interpolation problems for functions with zero integrals over balls of fixed radius”, Doklady Mathematics, 101:1 (2020), 16–19 | DOI | MR | Zbl

[22] Volchkov V.V., Volchkov Vit.V., “Continuous mean periodic extension of functions from an interval”, Doklady Mathematics, 103:1 (2021), 14–18 | DOI | MR | Zbl

[23] Volchkov V.V., Volchkov Vit.V., “Continuous extension of functions from a segment to functions in $\mathbb{R}^n$ with zero ball means”, Russian Mathematics, 65:3 (2021), 1–11 | DOI | MR | Zbl

[24] Volchkov Vit.V., Volchkova N.P., “Vector fields with zero flux through spheres of fixed radius”, 2018, 20 (4), 20–34 | MR | MR

[25] Volchkova N.P., Volchkov Vit.V., Ischenko N.A., “Erasing od singularities of functions with zero integrals over disks”, Vladikavkaz Mathematical Journal, 23:2 (2021), 19–33 | MR | MR | Zbl

[26] Ahlfors L., M$\ddot{o}$bius Transformations in Several Dimensions, University of Minnesota, Minneapolis, 1981 | MR

[27] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 1, Nauka, M., 1973; Bateman H., Erdélyi A., Higher Transcendental Functions, McGraw-Hill, New York, 1953; Бейтмен Г., Эрдейи А., Высшие трансцендентные функции, т. 2, Наука, М., 1974; Bateman H., Erdélyi A., Higher Transcendental Functions, McGraw-Hill, New York, 1953

[28] Izvestiya Mathematics, “A definitive version of the local two-radii theorem on hyperbolic spaces”, 2001, 2 (65), 207–229 | MR | Zbl

[29] Stein E., Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, New Jersey, 1971

[30] Gel'fand I.M., Graev M.I., Retakh V.S., “General hypergeometric systems of equations and series of hypergeometric type”, Russian Mathematical Surveys, 47:4 (1992), 1–88 | DOI | MR | Zbl

[31] Vilenkin N.Ja., Special Functions and the Theory of Group Representations, AMS, Rhode Island, 1968 | MR | MR | Zbl