Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2022_7_1_a9, author = {D. A. Kuzmin and I. V. Bychkov and M. G. Vakhitov and D. S. Klygach}, title = {Reflection of microvawes from thin film of vanadium dioxide}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {123--130}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a9/} }
TY - JOUR AU - D. A. Kuzmin AU - I. V. Bychkov AU - M. G. Vakhitov AU - D. S. Klygach TI - Reflection of microvawes from thin film of vanadium dioxide JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2022 SP - 123 EP - 130 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a9/ LA - ru ID - CHFMJ_2022_7_1_a9 ER -
%0 Journal Article %A D. A. Kuzmin %A I. V. Bychkov %A M. G. Vakhitov %A D. S. Klygach %T Reflection of microvawes from thin film of vanadium dioxide %J Čelâbinskij fiziko-matematičeskij žurnal %D 2022 %P 123-130 %V 7 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a9/ %G ru %F CHFMJ_2022_7_1_a9
D. A. Kuzmin; I. V. Bychkov; M. G. Vakhitov; D. S. Klygach. Reflection of microvawes from thin film of vanadium dioxide. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 1, pp. 123-130. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a9/
[1] Capmany J., Novak D., “Microwave photonics combines two worlds”, Nature Photonics, 1:6 (2007), 319–330 | DOI
[2] Capmany J., Li G., Lim C., Yao J., “Microwave photonics: current challenges towards widespread application”, Optics Express, 21:19 (2013), 22862–22867 | DOI
[3] Marpaung D., Yao J., Capmany J., “Integrated microwave photonics”, Nature Photonics, 13:2 (2019), 80–90 | DOI
[4] Morin F.J., “Oxides which show a metal-to-insulator transition at the Neel temperature”, Physical Review Letters, 3:1 (1959), 34–35 | DOI
[5] Mott N., Metal-Insulator Transitions, CRC Press, London, 1990
[6] Bychkov I.V., Kuzmin D.A., Tolkachev V.A., Kamantsev A.P., Koledov V.V., Shavrov V.G., “Diffraction of a plane electromagnetic wave by a VO$_2$ microsphere in the phase transition region”, Physics of the Solid State, 62:6 (2020), 993–997 | DOI
[7] Long L., Taylor S., Wang L., “Enhanced infrared emission by thermally switching the excitation of magnetic polariton with scalable microstructured VO$_2$ metasurfaces”, ACS Photonics, 7:8 (2020), 2219–2227 | DOI
[8] Kang T., Ma Z., Qin J., et al., “Large-scale, power-efficient Au/VO$_2$ active metasurfaces for ultrafast optical modulation”, Nanophotonics, 10:2 (2021), 909–918 | DOI
[9] Tripathi A., John J., Kruk S., et al., “Tunable Mie-resonant dielectric metasurfaces based on VO$_2$ phase-transition materials”, ACS Photonics, 8:4 (2021), 1206–1213 | DOI
[10] Usik M. O., Kharitonova O. G., Kuzmin D. A., Bychkov I. V., Tolkachev V. A., Shavrov V. G., Temnov V. V., “Excitation of surface plasmon-polaritons in hybrid graphene metasurface — vanadium dioxidenanostructure using prism coupling”, Chelyab. fiz.-mat. zhurn., 6:3 (2021), 375–383
[11] Lazukova N.I., Gubanov V.A., “Optical spectrum of vanadium dioxide at the semiconductor-metal phase transition”, Optics and spectroscopy, 42:6 (1977), 1200–1202 (In Russ.)
[12] Osmolovskaya O.M., Smirnov V.M., Selyutin A.A., “Synthesis and magnetic properties of two-dimensional vanadium (IV) oxide nanostructures on silica surface”, Russian Journal of General Chemistry, 78:10 (2008), 1872–-1876 (In Russ.) | DOI
[13] Kirilenko V.V., Zhigarnovskii B.M., Beirakhov A.G., et al., “Synthesizing film-forming materials from vanadium oxides and investigating the possibilities of producing optical coatings based on them”, Journal of Optical Technology, 77:9 (2010), 582–591 (In Russ.)
[14] Tazawa M., Jin P., Tanemur S., “Optical constants of V$_{1-x}$W$_x$O$_2$ films”, Applied Optics., 37:10 (1998), 1858–1861 | DOI