$\rho$-Almost periodic type functions in ${\mathbb R}^{n}$
Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 1, pp. 80-96

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate various classes of multi-dimensional $(S,{\mathbb D}, {\mathcal B})$-asymptotically $(\omega,\rho)$-periodic type functions, multi-dimensional quasi-asymptotically $\rho$-almost periodic type functions and multi-dimensional $\rho$-slowly oscillating type functions of the form $F : I \times X \rightarrow Y,$ where $n\in {\mathbb N},$ $\emptyset \neq I \subseteq {\mathbb R}^{n},$ $\omega \in {\mathbb R}^{n} \setminus \{0\},$ $X$ and $Y$ are complex Banach spaces and $\rho$ is a binary relation on $Y.$ The main structural properties of these classes of almost periodic type functions are deduced. We also provide certain applications of our results to the abstract Volterra integro-differential equations.
Keywords: $(S,{\mathbb D}, {\mathcal B})$-asymptotically $(\omega,\rho)$-periodic type functions, quasi-asymptotically $\rho$-almost periodic type functions, remotely $\rho$-almost periodic type functions, $\rho$-slowly oscillating type functions, abstract Volterra integro-differential equations.
@article{CHFMJ_2022_7_1_a6,
     author = {M. Kosti\'c},
     title = {$\rho${-Almost} periodic type functions in ${\mathbb R}^{n}$},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {80--96},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a6/}
}
TY  - JOUR
AU  - M. Kostić
TI  - $\rho$-Almost periodic type functions in ${\mathbb R}^{n}$
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2022
SP  - 80
EP  - 96
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a6/
LA  - en
ID  - CHFMJ_2022_7_1_a6
ER  - 
%0 Journal Article
%A M. Kostić
%T $\rho$-Almost periodic type functions in ${\mathbb R}^{n}$
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2022
%P 80-96
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a6/
%G en
%F CHFMJ_2022_7_1_a6
M. Kostić. $\rho$-Almost periodic type functions in ${\mathbb R}^{n}$. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 1, pp. 80-96. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a6/