$\rho$-Almost periodic type functions in ${\mathbb R}^{n}$
Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 1, pp. 80-96
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate various classes of multi-dimensional $(S,{\mathbb D}, {\mathcal B})$-asymptotically
$(\omega,\rho)$-periodic type functions,
multi-dimensional quasi-asymptotically $\rho$-almost periodic type functions and multi-dimensional $\rho$-slowly oscillating type functions of the form $F : I \times X \rightarrow Y,$ where
$n\in {\mathbb N},$
$\emptyset \neq I \subseteq {\mathbb R}^{n},$ $\omega \in {\mathbb R}^{n} \setminus \{0\},$ $X$ and $Y$ are complex Banach spaces and $\rho$ is a binary relation on $Y.$
The main structural properties
of these classes of almost periodic type functions
are deduced.
We also provide certain applications of our results to
the abstract Volterra integro-differential equations.
Keywords:
$(S,{\mathbb D}, {\mathcal B})$-asymptotically
$(\omega,\rho)$-periodic type functions, quasi-asymptotically $\rho$-almost periodic type functions, remotely $\rho$-almost periodic type functions, $\rho$-slowly oscillating type functions,
abstract Volterra integro-differential equations.
@article{CHFMJ_2022_7_1_a6,
author = {M. Kosti\'c},
title = {$\rho${-Almost} periodic type functions in ${\mathbb R}^{n}$},
journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
pages = {80--96},
publisher = {mathdoc},
volume = {7},
number = {1},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a6/}
}
M. Kostić. $\rho$-Almost periodic type functions in ${\mathbb R}^{n}$. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 1, pp. 80-96. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a6/