$\rho$-Almost periodic type functions in ${\mathbb R}^{n}$
Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 1, pp. 80-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate various classes of multi-dimensional $(S,{\mathbb D}, {\mathcal B})$-asymptotically $(\omega,\rho)$-periodic type functions, multi-dimensional quasi-asymptotically $\rho$-almost periodic type functions and multi-dimensional $\rho$-slowly oscillating type functions of the form $F : I \times X \rightarrow Y,$ where $n\in {\mathbb N},$ $\emptyset \neq I \subseteq {\mathbb R}^{n},$ $\omega \in {\mathbb R}^{n} \setminus \{0\},$ $X$ and $Y$ are complex Banach spaces and $\rho$ is a binary relation on $Y.$ The main structural properties of these classes of almost periodic type functions are deduced. We also provide certain applications of our results to the abstract Volterra integro-differential equations.
Keywords: $(S,{\mathbb D}, {\mathcal B})$-asymptotically $(\omega,\rho)$-periodic type functions, quasi-asymptotically $\rho$-almost periodic type functions, remotely $\rho$-almost periodic type functions, $\rho$-slowly oscillating type functions, abstract Volterra integro-differential equations.
@article{CHFMJ_2022_7_1_a6,
     author = {M. Kosti\'c},
     title = {$\rho${-Almost} periodic type functions in ${\mathbb R}^{n}$},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {80--96},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a6/}
}
TY  - JOUR
AU  - M. Kostić
TI  - $\rho$-Almost periodic type functions in ${\mathbb R}^{n}$
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2022
SP  - 80
EP  - 96
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a6/
LA  - en
ID  - CHFMJ_2022_7_1_a6
ER  - 
%0 Journal Article
%A M. Kostić
%T $\rho$-Almost periodic type functions in ${\mathbb R}^{n}$
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2022
%P 80-96
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a6/
%G en
%F CHFMJ_2022_7_1_a6
M. Kostić. $\rho$-Almost periodic type functions in ${\mathbb R}^{n}$. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 1, pp. 80-96. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a6/

[1] Levitan M., Almost periodic functions, G.I.T.T.L., Moscow, 1953 (In Russ.) | MR | Zbl

[2] Besicovitch A.S., Almost Periodic Functions, Dover Publ., New York, 1954 | MR

[3] Fink A.M., Almost Periodic Differential Equations, Springer-Verlag, Berlin, 1974 | MR | Zbl

[4] Zaidman S., Almost-Periodic Functions in Abstract Spaces, Pitman, Boston, 1985 | MR | Zbl

[5] Pankov A.A., Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations, Kluwer Academic Publ., Dordrecht, 1990 | MR | Zbl

[6] N'Guérékata G.M., Almost Automorphic and Almost Periodic Functions in Abstract Spaces, Kluwer Academic Publ., Dordrecht, 2001 | MR | Zbl

[7] Diagana T., Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, Springer-Verlag, New York, 2013 | MR | Zbl

[8] Kostić M., Almost Periodic and Almost Automorphic Type Solutions to Integro-Differential Equations, Walter de Gruyter, Berlin, 2019 | MR

[9] Alvarez E., Gómez A., Pinto M., “$(\omega,c)$-Periodic functions and mild solution to abstract fractional integro-differential equations”, Electronic Journal of Qualitative Theory of Differential Equations, 16 (2018), 1–8 | DOI | MR

[10] Alvarez E., Castillo S., Pinto M., “$(\omega,c)$-Pseudo periodic functioins, first order Cauchy problem and Lasota — Wazewska model with ergodic and unbounded oscillating production of red cells”, Boundary Value Problems, 106 (2019), 1–20 | MR

[11] Alvarez E., Castillo S., Pinto M., “$(\omega,c)$-Asymptotically periodic functions, first-order Cauchy problem, and Lasota — Wazewska model with unbounded oscillating production of red cells”, Mathematical Methods in the Applied Sciences, 43 (2020), 305–319 | DOI | MR | Zbl

[12] Fečkan M., Liu K., Wang J.-R., “$(w,\mathbb{T})$-Periodic solutions of impulsive evolution equations”, Evolution Equations and Control Theory, 11:2 (2022), 415–437 | DOI | MR

[13] Henríquez H.R., Pierri M., Táboas P., “On S-asymptotically $\omega$-periodic functions on Banach spaces and applications”, Journal of Mathematical Analysis and Applications, 343 (2008), 1119–1130 | DOI | MR | Zbl

[14] Cuevas C., de Souza J.C., “Existence of $S$-asymptotically $\omega$-periodic solutions for fractional order functional integro-differential equations with infinite delay”, Nonlinear Analysis, 72 (2010), 1683–1689 | DOI | MR | Zbl

[15] Oueama-Guengai E.R., N'Guérékata G.M., “On $S$-asymptotically $\omega$-periodic and Bloch periodic mild solutions to some fractional differential equations in abstract spaces”, Mathematical Methods in the Applied Sciences, 41 (2018), 9116–9122 | DOI | MR | Zbl

[16] Kostić M., “Generalized $c$-almost periodic functions in ${\mathbb R}^{n}$”, Archivum Mathematicum (Brnö), 57 (2021), 221–253 | DOI | MR | Zbl

[17] Kostić M., “Quasi-asymptotically almost periodic functions and applications”, Bulletin of the Brazilian Mathematical Society (New Series), 52 (2021), 183–212 | DOI | MR | Zbl

[18] Khalladi M.T., Kostić M., Pinto M., Rahmani A., Velinov D., “Generalized $c$-almost periodic functions and applications”, Bulletin of the International Mathematical Virtual Institute, 11 (2021), 283–293 | MR

[19] Chávez A., Khalil K., Kostić M., Pinto M., “Multi-dimensional almost periodic type functions and applications”, 2020, arXiv: 2012.00543

[20] Chávez A., Khalil K., Kostić M., Pinto M. https://hal.archives-ouvertes.fr/hal-03035195

[21] Khalladi M.T., Kostić M., Pinto M., Rahmani A., Velinov D., “$c$-Almost periodic type functions and applications”, Nonautonomous Dynamical Systems, 7 (2020), 176–193 | DOI | MR | Zbl

[22] Kostić M., “Multi-dimensional $c$-almost periodic type functions and applications”, 2020, arXiv: 2012.15735 | MR

[23] Kostić M., “Multi-dimensional $(\omega, c)$-almost periodic type functions and applications”, Nonautonomous Dynamical Systems, 8 (2021), 136–151 | DOI | MR | Zbl

[24] Kostić M., Stepanov and Weyl classes of multi-dimensional $\rho$-almost periodic type functions, HAL Id: hal-03325671 Available at: (Preprint submitted on 25.08.2021) https://hal.archives-ouvertes.fr/hal-03325671

[25] Sarason D., “Remotely almost periodic functions”, Contemporary Mathematics, 32 (1984), 237–242 | DOI | MR | Zbl

[26] Sarason D., “The Banach algebra of slowly oscillating functions”, Houston Journal of Mathematics, 33:4 (2007), 1161–1182 | MR | Zbl

[27] Kostić M., Kumar V., “Remotely $c$-almost periodic type functions in ${\mathbb R}^{n}.$”, 2021, arXiv: 2107.02910

[28] Chávez A., Khalil K., Kostić M., Pinto M., “Multi-dimensional almost automorphic type functions and applications, submitted”, 2021, arXiv: 2103.10467

[29] Salsa S., Partial differential equations in action: From modelling to theory, Springer-Verlag, Milano, 2008 | MR | Zbl

[30] Zhang S., Piao D., “Time remotely almost periodic viscosity solutions of Hamilton-Jacobi equations”, ISRN Mathematical Analysis, 2011, 415358 | MR | Zbl

[31] Diening L., Harjulehto P., Hästüso P., Ruzicka M., Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg, 2011 | MR | Zbl

[32] Diagana T., Kostić M., “Generalized almost periodic and generalized asymptotically almost periodic type functions in Lebesgue spaces with variable exponents $L^{p(x)}$”, Filomat, 34 (2020), 1629–1644 | DOI | MR

[33] Diagana T., Kostić M., “Generalized almost automorphic and generalized asymptotically almost automorphic type functions in Lebesgue spaces with variable exponents $L^{p(x)},$”, Chapter 1, Recent Studies in Differential Equations, ed. H. Forster, Nova Science Publishers, New York, 2020, 1–28 | MR

[34] Kostić M., Selected Topics in Almost Periodicity, Walter de Gruyter, Berlin, 2022