Solvability of an axisymmetric problem for a nonlinear parabolic equation in domains with a non-cylindrical or unknown boundary. II
Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 1, pp. 43-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

The regular solvability of a Stefan-type problem for a quasi-linear three-dimensional parabolic equation with axial symmetry is proved, and, in general, in time. The equation describes the processes of phase transitions of a substance from one state to another. The boundary of the transition phase is unknown, is determined together with the solution and belongs to the class $W^1_2$. Unlike the well-known Stefan problem, when the latent heat of melting of a substance is known, here we consider the problem when it is necessary to determine this characteristic if the volume of the melted substance for a given period is known.
Keywords: Stefan's condition, quasilinear parabolic equation, non-cylindrical domain, compactness theorem.
@article{CHFMJ_2022_7_1_a4,
     author = {A. G. Podgaev},
     title = {Solvability of an axisymmetric problem for a nonlinear parabolic equation in domains with a non-cylindrical or unknown boundary. {II}},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {43--53},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a4/}
}
TY  - JOUR
AU  - A. G. Podgaev
TI  - Solvability of an axisymmetric problem for a nonlinear parabolic equation in domains with a non-cylindrical or unknown boundary. II
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2022
SP  - 43
EP  - 53
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a4/
LA  - ru
ID  - CHFMJ_2022_7_1_a4
ER  - 
%0 Journal Article
%A A. G. Podgaev
%T Solvability of an axisymmetric problem for a nonlinear parabolic equation in domains with a non-cylindrical or unknown boundary. II
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2022
%P 43-53
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a4/
%G ru
%F CHFMJ_2022_7_1_a4
A. G. Podgaev. Solvability of an axisymmetric problem for a nonlinear parabolic equation in domains with a non-cylindrical or unknown boundary. II. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 1, pp. 43-53. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a4/

[1] Podgaev A.G., “Solvability of boundary value problems for quazi-linear parabolic equation in domains with a non-cylindrical or unknown boundary. I.”, Chelyabinsk Physical and Mathematical Journal, 5:1 (2020), 44–55 | MR | Zbl

[2] Podgaev A.G., Moskvicheva K.S., “The maximum principle for generalized solutions of a nonlinear degenerate parabolic equation in a nonstationary domain with a nonsmooth boundary”, Pacific State University — Start: fundamental and applied research of young people, materials of the scientific-practical conference, v. 2020, Pacific State University, Khabarovsk, 2020, 30–35 (In Russ.)

[3] Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, Springer, Berlin, Heidelberg, 2001 | MR

[4] Kolmogorov A.N., Fomin S.V., Elements of functions theory and functional analysis, Fizmatlit Publ., Moscow, 2006 (In Russ.) | MR

[5] Podgaev A.G., “On relative compactness of a set of abstract functions in a scale of Banach spaces”, Siberian Mathematical Journal, 34:2 (1993), 320–329 | DOI | MR | Zbl

[6] Podgaev A.G., Lisenkov K.B., “Solvability of a quasi-linear parabolic equation in a domain with a piecewise monotone boundary”, Far Eastern Mathematical Journal, 13:2 (2013), 250–272 (In Russ.) | MR | Zbl