Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2022_7_1_a4, author = {A. G. Podgaev}, title = {Solvability of an axisymmetric problem for a nonlinear parabolic equation in domains with a non-cylindrical or unknown boundary. {II}}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {43--53}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a4/} }
TY - JOUR AU - A. G. Podgaev TI - Solvability of an axisymmetric problem for a nonlinear parabolic equation in domains with a non-cylindrical or unknown boundary. II JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2022 SP - 43 EP - 53 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a4/ LA - ru ID - CHFMJ_2022_7_1_a4 ER -
%0 Journal Article %A A. G. Podgaev %T Solvability of an axisymmetric problem for a nonlinear parabolic equation in domains with a non-cylindrical or unknown boundary. II %J Čelâbinskij fiziko-matematičeskij žurnal %D 2022 %P 43-53 %V 7 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a4/ %G ru %F CHFMJ_2022_7_1_a4
A. G. Podgaev. Solvability of an axisymmetric problem for a nonlinear parabolic equation in domains with a non-cylindrical or unknown boundary. II. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 1, pp. 43-53. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a4/
[1] Podgaev A.G., “Solvability of boundary value problems for quazi-linear parabolic equation in domains with a non-cylindrical or unknown boundary. I.”, Chelyabinsk Physical and Mathematical Journal, 5:1 (2020), 44–55 | MR | Zbl
[2] Podgaev A.G., Moskvicheva K.S., “The maximum principle for generalized solutions of a nonlinear degenerate parabolic equation in a nonstationary domain with a nonsmooth boundary”, Pacific State University — Start: fundamental and applied research of young people, materials of the scientific-practical conference, v. 2020, Pacific State University, Khabarovsk, 2020, 30–35 (In Russ.)
[3] Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, Springer, Berlin, Heidelberg, 2001 | MR
[4] Kolmogorov A.N., Fomin S.V., Elements of functions theory and functional analysis, Fizmatlit Publ., Moscow, 2006 (In Russ.) | MR
[5] Podgaev A.G., “On relative compactness of a set of abstract functions in a scale of Banach spaces”, Siberian Mathematical Journal, 34:2 (1993), 320–329 | DOI | MR | Zbl
[6] Podgaev A.G., Lisenkov K.B., “Solvability of a quasi-linear parabolic equation in a domain with a piecewise monotone boundary”, Far Eastern Mathematical Journal, 13:2 (2013), 250–272 (In Russ.) | MR | Zbl