Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2022_7_1_a3, author = {A. I. Kozhanov and N. N. Shadrina}, title = {Investigation of the influence of parameters on the correctness of the conjugation problem for the {Boussinesq~---} {L\"ove}}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {30--42}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a3/} }
TY - JOUR AU - A. I. Kozhanov AU - N. N. Shadrina TI - Investigation of the influence of parameters on the correctness of the conjugation problem for the Boussinesq~--- L\"ove JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2022 SP - 30 EP - 42 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a3/ LA - ru ID - CHFMJ_2022_7_1_a3 ER -
%0 Journal Article %A A. I. Kozhanov %A N. N. Shadrina %T Investigation of the influence of parameters on the correctness of the conjugation problem for the Boussinesq~--- L\"ove %J Čelâbinskij fiziko-matematičeskij žurnal %D 2022 %P 30-42 %V 7 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a3/ %G ru %F CHFMJ_2022_7_1_a3
A. I. Kozhanov; N. N. Shadrina. Investigation of the influence of parameters on the correctness of the conjugation problem for the Boussinesq~--- L\"ove. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 1, pp. 30-42. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a3/
[1] Zhegalov V.I., Mironov A.N., Utkina E.A., Equation with a dominant partial derivative, Kazan Uiversity, Kazan, 2014 (In Russ.)
[2] Yakubov S.Ya., Linear differential operator equations and their applications, Elm, Baku, 1985 (In Russ.)
[3] Demidenko G.V., Uspenskii S.V., Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, Inc., New York, Basel, Hong Kong, 2003 | MR | MR | Zbl
[4] Kiguradze T., “On the correctness of the Dirichlet problem in a characteristic rectangle for fourth order linear hyperbolic equations”, Georgian Mathematical Journal, 6, no. 5, 447–470 | MR | Zbl
[5] Utkina E.A., “Dirichlet Problem for a fourth-order equation”, Differential Equations, 47:4 (2011), 599–603 | DOI | MR | Zbl
[6] Utkina E.A., Characteristic boundary value problems for high-order linear equations with higher partial derivatives, Thesis of Doctor of Sciences in Physics and Mathematics, Kazan Federal Uiversity, Kazan, 2011 (In Russ.)
[7] Pul'kina L.S., Problems with nonclassical conditions for hyperbolic equations, Samara State University, Samara, 2012 (In Russ.)
[8] Guezane-Lakoud A., Boumaza N., “Galerkin method for the Boussinesq equation with integral condition”, Journal of Nonlinear Evolution Equations and Applications, 2012:3 (2012), 29–40 | MR
[9] Zamyshlyaeva A.A., Yuzeeva A.V., “The initial-finish value problem for the Boussinesq — Löve equation”, Bulletin of South Ural State University. Ser. Mathematical modelling and programming, 16:5 (2010), 23–31 (In Russ.) | Zbl
[10] Zamyshlyaeva A.A., Suvorovtsev S.V., “The search of a numerical solution for the Cauchy — Dirichlet problem to the Boussinesq — Löve equation by the finite difference method”, Bulletin of Samara State University, 2015, no. 6, 76–81 (In Russ.)
[11] Ladyzhenskaya O.A., “On solving of the general diffraction problem”, Reports of Academy of Sciences of USSR, 96:3 (1954), 433–436 (In Russ.) | Zbl
[12] Ladyzhenskaya O.A., Rivkind V.Ya., Ural'tseva N.N., “On classical solvability of diffraction problems”, Proceedings of Mathematical Institute of Academy of Sciences of USSR, 92, 1966, 116–146 (In Russ.) | Zbl
[13] Ladyzhenskaya O.A., Ural'tseva N.N., Linear and Quasi-Linear Elliptic Equations, Academic Press, New York, 1968 | MR | MR
[14] Oleynik O.A., “Solving the main boundary value problems for second order equations with discontinuous coefficients”, Reports of Academy of Sciences of USSR, 124:6 (1959), 1219–1222 (In Russ.) | Zbl
[15] Oleynik O.A., “On a method of solving a general diffraction problem”, Reports of Academy of Sciences of USSR, 135:5 (1960), 1054–1057 (In Russ.)
[16] Il'in V.A., “On solvability of Diriclet and Neumann problems for linear elliptic operator with discontinuous coefficients”, Reports of Academy of Sciences of USSR, 137:1 (1961), 28–30 (In Russ.)
[17] Il'in V.A., “On system of classical eigenfunctions of linear self-adjoint elliptic operator with discontinuous coefficients”, Reports of Academy of Sciences of USSR, 137:2 (1961), 272–275 (In Russ.)
[18] Il'in V.A., Shishmarev I.A., “Method of potentials for Dirichlet and Neumann problems in the case of equations with discontinuous coefficients”, Siberian Mathematical Journal, 2:1 (1961), 46–58 (In Russ.)
[19] Il'in V.A., Shishmarev I.A., “The problem for eigenfunctions for the operator $Lu={\rm div}[p(x){\rm grad}u]-q(x)u$ with discontinuous coefficients”, Siberian Mathematical Journal, 2:4 (1961), 523–536 (In Russ.)
[20] Il'in V.A., “Fourier method for a hyperbolic equation with discontinuous coefficients”, Reports of Academy of Sciences of USSR, 142:1 (1962), 21–24 (In Russ.)
[21] Il'in V.A., Luferenko P.V., “Mixed problems describing longitudinal oscillations of a rod consisting of two segments with different densities and different elasticities but equal impedances”, Doklady Mathematics, 80:2 (2009), 642–645 (In Russ.)
[22] Il'in V.A., Luferenko P.V., “Generalized solutions of initial-boundary value problems for a discontinuous wave equation in the case of equal impedances”, Doklady Mathematics, 80:3 (2009), 901 | DOI | MR
[23] Schechter M., “General boundary value problems for elliptic partial differential equations”, Communcations on Pure and Applied Mathematics, 12 (1959), 457–486 | DOI | MR | Zbl
[24] Kozhanov A. I., Shadrina N. N., “Boundary value problems with conjugation conditions for quasi-parabolic equations of the third order with a discontinuous sign-variable coefficient”, Siberian Electronic Mathematical Reports, 18:1 (2021), 599–616 | MR | Zbl
[25] Shadrina N.N., “On the influence of parameters on the solvability of some conjugate problems for elliptical equations”, Siberian Electronic Mathematical Reports, 13 (2016), 411–425 | MR | Zbl
[26] Trenogin V.A., Functional Analysis, Nauka Publ., Moscow, 1980 (In Russ.) | MR