Generalized boundary problem for an ordinary differential equation of fractional order
Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 1, pp. 20-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an ordinary differential equation of fractional order, a problem with general conditions is formulated and solved. A representation of a solution of the problem under study is found. The uniqueness theorem of a solution is proved. The boundary conditions are given in the form of linear functionals, which allows us to cover a fairly wide class of linear local and non-local conditions.
Keywords: fractional order equation, functional, Gerasimov — Caputo fractional derivative, Mittag-Leffler function.
@article{CHFMJ_2022_7_1_a2,
     author = {L. Kh. Gadzova},
     title = {Generalized boundary problem for an ordinary differential equation of fractional order},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {20--29},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a2/}
}
TY  - JOUR
AU  - L. Kh. Gadzova
TI  - Generalized boundary problem for an ordinary differential equation of fractional order
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2022
SP  - 20
EP  - 29
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a2/
LA  - ru
ID  - CHFMJ_2022_7_1_a2
ER  - 
%0 Journal Article
%A L. Kh. Gadzova
%T Generalized boundary problem for an ordinary differential equation of fractional order
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2022
%P 20-29
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a2/
%G ru
%F CHFMJ_2022_7_1_a2
L. Kh. Gadzova. Generalized boundary problem for an ordinary differential equation of fractional order. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 1, pp. 20-29. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a2/

[1] Nakhushev A.M., Fractional calculus and its application, Fizmatlit Publ., Moscow, 2003 (In Russ.)

[2] Kilbas A.A., “Theory and applications of fractional differential equations: course of lectures”, Methodological school-conference “Mathematical Physics and Nanotechnologies”, Samara, 2009 (In Russ.)

[3] Novozhenova O.G., Biography and scientific works of Alexey Nikiforovich Gerasimov. On linear operators, elastic viscosity, eleutherosis and fractional derivatives, Pero Publ., Moscow, 2018 (In Russ.)

[4] Dzhrbashyan M.M., Integral transformations and representations of functions in the complex domain, Nauka Publ., Moscow, 1966 (In Russ.) | MR

[5] Oldham K. B., Spanier J., The fractional calculus, Academic Press, New York, 1974 | MR | Zbl

[6] Samko S.G., Kilbas A.A., Marichev O.I., Integrals and derivatives of fractional order and some of their applications, Nauka i Tekhnologii, Minsk, 1987 (In Russ.)

[7] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006 | MR

[8] Bagley R. L., Torvik P. J., “Fractional calculus in the transient analysis of viscoelastically damped structures”, AIAA Journal, 23:6 (1985), 918–925 | DOI | Zbl

[9] Hilfer R., Applications of fractional calculus in physics, World Scientific, River Edge, 2000 | MR | Zbl

[10] Uchaykin V.V., The method of fractional derivatives, Artishock Publ., Ulyanovsk, 2008 (In Russ.)

[11] Pskhu A.V., Partial differential equations of fractional order, Nauka Publ., Moscow, 2005 (In Russ.)

[12] Barrett J. H., “Differential equations of non-integer order”, Canadian Journal of Mathematics, 6:4 (1954), 529–541 | DOI | MR | Zbl

[13] Dzhrbashyan M.M., Nersesyan A.B., “ractional derivatives and the Cauchy problem for differential equations of fractional order”, News of the Academy of Armenian SSR. Mathematics, 3:1 (1968), 3–28 (In Russ.) | MR

[14] Dzhrbashyan M.M., “A boundary value problem for a differential operator of fractional order of Sturm — Liouville type”, News of the Academy of Armenian SSR. Mathematics, 5:2 (1970), 71–96 (In Russ.) | Zbl

[15] Pskhu A.V., “Initial-value problem for a linear ordinary differential equation of noninteger order”, Sbornik: Mathematics, 202:4 (2011), 571–582 (In Russ.) | MR | Zbl

[16] Gadzova L.Kh., “Boundary value problem for a linear ordinary differential equation with a fractional discretely distributed differentiation operator”, Differential Equations, 54:2 (2018), 178–184 | DOI | MR | Zbl

[17] Gadzova L.Kh., “Nonlocal boundary-value problem for a linear ordinary differential equation with fractional discretely distributed differentiation operator”, Mathematical Notes, 106:6 (2019), 904–908 | DOI | MR | Zbl

[18] Naimark M.A., Linear differential operators, Nauka Publ., Moscow, 1969 (In Russ.)

[19] Gadzova L.Kh., “Problem for an ordinary differential equation with a general boundary condition”, Reports of Adyghe (Circassian) International Academy of Sciences, 21:2 (2021), 9–14 (In Russ.)