Generalized boundary problem for an ordinary differential equation of fractional order
Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 1, pp. 20-29

Voir la notice de l'article provenant de la source Math-Net.Ru

For an ordinary differential equation of fractional order, a problem with general conditions is formulated and solved. A representation of a solution of the problem under study is found. The uniqueness theorem of a solution is proved. The boundary conditions are given in the form of linear functionals, which allows us to cover a fairly wide class of linear local and non-local conditions.
Keywords: fractional order equation, functional, Gerasimov — Caputo fractional derivative, Mittag-Leffler function.
@article{CHFMJ_2022_7_1_a2,
     author = {L. Kh. Gadzova},
     title = {Generalized boundary problem for an ordinary differential equation of fractional order},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {20--29},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a2/}
}
TY  - JOUR
AU  - L. Kh. Gadzova
TI  - Generalized boundary problem for an ordinary differential equation of fractional order
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2022
SP  - 20
EP  - 29
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a2/
LA  - ru
ID  - CHFMJ_2022_7_1_a2
ER  - 
%0 Journal Article
%A L. Kh. Gadzova
%T Generalized boundary problem for an ordinary differential equation of fractional order
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2022
%P 20-29
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a2/
%G ru
%F CHFMJ_2022_7_1_a2
L. Kh. Gadzova. Generalized boundary problem for an ordinary differential equation of fractional order. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 1, pp. 20-29. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a2/