Generalized boundary problem for an ordinary differential equation of fractional order
Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 1, pp. 20-29
Voir la notice de l'article provenant de la source Math-Net.Ru
For an ordinary differential equation of fractional order, a problem with general conditions is formulated and solved. A representation of a solution of the problem under study is found. The uniqueness theorem of a solution is proved. The boundary conditions are given in the form of linear functionals, which allows us to cover a fairly wide class of linear local and non-local conditions.
Keywords:
fractional order equation, functional, Gerasimov — Caputo fractional derivative, Mittag-Leffler function.
@article{CHFMJ_2022_7_1_a2,
author = {L. Kh. Gadzova},
title = {Generalized boundary problem for an ordinary differential equation of fractional order},
journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
pages = {20--29},
publisher = {mathdoc},
volume = {7},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a2/}
}
TY - JOUR AU - L. Kh. Gadzova TI - Generalized boundary problem for an ordinary differential equation of fractional order JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2022 SP - 20 EP - 29 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a2/ LA - ru ID - CHFMJ_2022_7_1_a2 ER -
L. Kh. Gadzova. Generalized boundary problem for an ordinary differential equation of fractional order. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 1, pp. 20-29. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a2/