On solvability of some classes of equations with Hilfer derivative in Banach spaces
Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 1, pp. 11-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

The issues of unique solvability of a Cauchy-type problem for an evolutionary equation in a Banach space with a Hilfer fractional derivative and with a bounded operator are investigated. The existence of a unique solution to the problem is proved, the solution is presented using Mittag-Leffler operator functions. The abstract result is used when considering a class of initial boundary value problems for partial differential equations
Keywords: Hilfer derivative, fractional order equation, initial problem, theorem on the existence and uniqueness of a solution, linear inhomogeneous equation, initial boundary value problem, Laplace operator.
@article{CHFMJ_2022_7_1_a1,
     author = {A. R. Volkova and V. E. Fedorov and D. M. Gordievskikh},
     title = {On solvability of some classes of equations with  {Hilfer} derivative in {Banach} spaces},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {11--19},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a1/}
}
TY  - JOUR
AU  - A. R. Volkova
AU  - V. E. Fedorov
AU  - D. M. Gordievskikh
TI  - On solvability of some classes of equations with  Hilfer derivative in Banach spaces
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2022
SP  - 11
EP  - 19
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a1/
LA  - ru
ID  - CHFMJ_2022_7_1_a1
ER  - 
%0 Journal Article
%A A. R. Volkova
%A V. E. Fedorov
%A D. M. Gordievskikh
%T On solvability of some classes of equations with  Hilfer derivative in Banach spaces
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2022
%P 11-19
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a1/
%G ru
%F CHFMJ_2022_7_1_a1
A. R. Volkova; V. E. Fedorov; D. M. Gordievskikh. On solvability of some classes of equations with  Hilfer derivative in Banach spaces. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 1, pp. 11-19. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a1/

[1] Nakhushev A.M., Elements of the fractional calculus and its applications, Kabardino-Balkarian Scientific Center of RAS, Nalchik, 2000 (In Russ.)

[2] Nakhushev A.M., Fractional calculus and its applications, Fizmatlit Publ., Moscow, 2003 (In Russ.)

[3] Uchaykin V.V., The method of fractional derivatives, Artishok Publ., Ul'yanovsk, 2008 (In Russ.)

[4] Tarasov V. E., Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, New York, 2011 | MR

[5] Caputo M., Fabrizio M., “A new definition of fractional derivative without singular kernel”, Progress in Fractional Differentiation and Applications, 1:2 (2015), 1–13

[6] Atangana A., Baleanu D., “New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model”, Thermal Science, 20 (2016), 763–769 | DOI

[7] Samko S.G., Kilbas A.A., Marichev O.I., Fractional Integrals and Derivatives: Theory and Applications, OPA, Amaterdam, 1993 | MR

[8] Podlubny I., Fractional Differential Equations, Academic Press, San Diego; Boston, 1999 | MR | Zbl

[9] Pskhu A.V., Partial differential equations of a fractional order, Nauka Publ., Moscow, 2005 | MR

[10] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier Science Publishing, Amsterdam; Boston; Heidelberg, 2006 | MR | Zbl

[11] Hilfer R., Applications of Fractional Calculus in Physics, WSPC, Singapore, 2000 | MR

[12] Dzhrbashyan M.M., Nersesyan A.B., “Fractional derivatives and the Cauchy problem for differential equations of fractional order”, Izvestiya Akademii Nauk Armyanskoy SSR. Matematika, 3 (1968), 3–28 (In Russ.)

[13] Fedorov V. E., Plekhanova M. V., Izhberdeeva E. M., “Initial value problems of linear equations with the Dzhrbashyan — Nersesyan derivative in Banach spaces”, Symmetry, 13 (2021), 1058 | DOI

[14] Volkova A.R., Izhberdeeva E.M., Fedorov V.E., “Initial value problems for equations with a composition of fractional derivatives”, Chelyabinsk Physical and Mathematical Journal, 6:3 (2021), 269–277 (In Russ.) | MR | Zbl

[15] Bogatyreva F.T., “Boundary value problems for first order partial differential equation with the Dzhrbashyan — Nersesyan operators”, Chelyabinsk Physical and Mathematical Journal, 6:4 (2021), 403–416 | MR | Zbl