Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2022_7_1_a1, author = {A. R. Volkova and V. E. Fedorov and D. M. Gordievskikh}, title = {On solvability of some classes of equations with {Hilfer} derivative in {Banach} spaces}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {11--19}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a1/} }
TY - JOUR AU - A. R. Volkova AU - V. E. Fedorov AU - D. M. Gordievskikh TI - On solvability of some classes of equations with Hilfer derivative in Banach spaces JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2022 SP - 11 EP - 19 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a1/ LA - ru ID - CHFMJ_2022_7_1_a1 ER -
%0 Journal Article %A A. R. Volkova %A V. E. Fedorov %A D. M. Gordievskikh %T On solvability of some classes of equations with Hilfer derivative in Banach spaces %J Čelâbinskij fiziko-matematičeskij žurnal %D 2022 %P 11-19 %V 7 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a1/ %G ru %F CHFMJ_2022_7_1_a1
A. R. Volkova; V. E. Fedorov; D. M. Gordievskikh. On solvability of some classes of equations with Hilfer derivative in Banach spaces. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 1, pp. 11-19. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a1/
[1] Nakhushev A.M., Elements of the fractional calculus and its applications, Kabardino-Balkarian Scientific Center of RAS, Nalchik, 2000 (In Russ.)
[2] Nakhushev A.M., Fractional calculus and its applications, Fizmatlit Publ., Moscow, 2003 (In Russ.)
[3] Uchaykin V.V., The method of fractional derivatives, Artishok Publ., Ul'yanovsk, 2008 (In Russ.)
[4] Tarasov V. E., Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, New York, 2011 | MR
[5] Caputo M., Fabrizio M., “A new definition of fractional derivative without singular kernel”, Progress in Fractional Differentiation and Applications, 1:2 (2015), 1–13
[6] Atangana A., Baleanu D., “New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model”, Thermal Science, 20 (2016), 763–769 | DOI
[7] Samko S.G., Kilbas A.A., Marichev O.I., Fractional Integrals and Derivatives: Theory and Applications, OPA, Amaterdam, 1993 | MR
[8] Podlubny I., Fractional Differential Equations, Academic Press, San Diego; Boston, 1999 | MR | Zbl
[9] Pskhu A.V., Partial differential equations of a fractional order, Nauka Publ., Moscow, 2005 | MR
[10] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier Science Publishing, Amsterdam; Boston; Heidelberg, 2006 | MR | Zbl
[11] Hilfer R., Applications of Fractional Calculus in Physics, WSPC, Singapore, 2000 | MR
[12] Dzhrbashyan M.M., Nersesyan A.B., “Fractional derivatives and the Cauchy problem for differential equations of fractional order”, Izvestiya Akademii Nauk Armyanskoy SSR. Matematika, 3 (1968), 3–28 (In Russ.)
[13] Fedorov V. E., Plekhanova M. V., Izhberdeeva E. M., “Initial value problems of linear equations with the Dzhrbashyan — Nersesyan derivative in Banach spaces”, Symmetry, 13 (2021), 1058 | DOI
[14] Volkova A.R., Izhberdeeva E.M., Fedorov V.E., “Initial value problems for equations with a composition of fractional derivatives”, Chelyabinsk Physical and Mathematical Journal, 6:3 (2021), 269–277 (In Russ.) | MR | Zbl
[15] Bogatyreva F.T., “Boundary value problems for first order partial differential equation with the Dzhrbashyan — Nersesyan operators”, Chelyabinsk Physical and Mathematical Journal, 6:4 (2021), 403–416 | MR | Zbl