Configuration homological ${\mathbb Z}_2$-invariants of manifolds
Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 4, pp. 427-439.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes the construction of configuration invariants of 3-manifolds. These invariants are based on defining 3-manifolds by their special spines and can be constructed in the following way. Let $P$ be a special polyhedron and $k\in\mathbb{N}$. To each ordered sequence $\xi$, consisting of $k$ elements of the second homology group of the polyhedron $P$ with coefficients in $\mathbb{Z}_2 $, using a configuration map $\omega$ we assign the number $\omega(P, \xi)\in \{0, 1\}$. The value of the invariant is the ratio of the number of sequences $\xi$ for which $\omega(P, \xi) = 1$ to the total number of all such sequences. The axioms that the configuration map must satisfy ensure the invariance of the resulting rational number under $T$-transformations of special polyhedra.
Keywords: special spine, virtual manifold, invariant, chain complex.
@article{CHFMJ_2021_6_4_a3,
     author = {F. G. Korablev},
     title = {Configuration homological ${\mathbb Z}_2$-invariants of manifolds},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {427--439},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_4_a3/}
}
TY  - JOUR
AU  - F. G. Korablev
TI  - Configuration homological ${\mathbb Z}_2$-invariants of manifolds
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2021
SP  - 427
EP  - 439
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_4_a3/
LA  - ru
ID  - CHFMJ_2021_6_4_a3
ER  - 
%0 Journal Article
%A F. G. Korablev
%T Configuration homological ${\mathbb Z}_2$-invariants of manifolds
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2021
%P 427-439
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_4_a3/
%G ru
%F CHFMJ_2021_6_4_a3
F. G. Korablev. Configuration homological ${\mathbb Z}_2$-invariants of manifolds. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 4, pp. 427-439. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_4_a3/

[1] Matveev S. V., “Virtual 3-manifolds”, Siberian Electronic Mathematical Reports, 6 (2009), 518–525

[2] Matveev S.V., Algorithmic Topology and Classification of 3-Manifolds, Heidelberg, Springer-Verlag, Berlin, 2007

[3] Wakui M., “On Dijkgraaf–Witten invariant for 3-manifolds”, Osaka Journal of Mathematics, 29:4 (1992), 675–696 | MR | Zbl

[4] Turaev V. G., Quantum invariants of knot s and 3-manifolds, De Gruyter, 2010

[5] Turaev V. G., Viro O. Y., “State-sum invariants of 3-manifolds and quantum $6j$-symbols”, Topology, 31 (1992), 865–902 | DOI | Zbl