Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2021_6_3_a3, author = {V. N. Pavlenko and D. K. Potapov}, title = {About a problem on conductor heating}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {299--311}, publisher = {mathdoc}, volume = {6}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a3/} }
V. N. Pavlenko; D. K. Potapov. About a problem on conductor heating. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 3, pp. 299-311. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a3/
[1] Kuiper H. J., “On positive solutions of nonlinear elliptic eigenvalue problems”, Rendiconti del Circolo Matematico di Palermo. Series 2, 20:2–3 (1971), 113–138 | DOI
[2] Krasnosel'skii M.A., Pokrovskii A.V., Systems with Hysteresis, Springer-Verlag, Berlin, 1989 | Zbl
[3] Potapov D.K., “On one problem of electrophysics with discontinuous nonlinearity”, Differential Equations, 50:3 (2014), 419–422 | DOI | Zbl
[4] Kuiper H. J., “Eigenvalue problems for noncontinuous operators associated with quasilinear elliptic equations”, Archive for Rational Mechanics and Analysis, 53:2 (1974), 178–186 | DOI | Zbl
[5] Shragin I.V., “Conditions for measurability of superpositions”, Soviet Mathematics Doklady, 12 (1971), 465–470 | Zbl
[6] Sobolev S.L., Some Applications of Functional Analysis in Mathematical Physics, American Mathematical Society, 1991 | Zbl
[7] Krasnosel'skii M.A., Pokrovskii A.V., “Regular solutions of equations with discontinuous nonlinearities”, Soviet Mathematics Doklady, 17 (1976), 128–132 | Zbl
[8] Krasnosel'skii M.A., Positive Solutions of Operator Equations, Noordhoff Ltd., Groningen, 1964 | Zbl
[9] Chang K. C., “Free boundary problems and the set-valued mappings”, Journal of Differential Equatons, 49:1 (1983), 1–28 | DOI | Zbl
[10] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983 | Zbl
[11] Ladyzhenskaya O. A., Ural'tseva N. N., Linear and quasilinear elliptic equations, Academic Press, New York; London, 1968 | Zbl