Initial value problems for equations with a composition of fractional derivatives
Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 3, pp. 269-277.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the unique solvability of initial problems for linear equations in Banach spaces with a composition of two fractional derivatives and with a bounded operator on the right side. It is shown that the compositions of fractional derivatives of Riemann — Liouville and (or) Gerasimov — Caputo are derivatives of Dzhrbashyan — Nersesyan. With the help of the previously obtained general results on the initial problem for a linear equation with the Dzhrbashyan — Nersesyan fractional derivative, statements are formulated about the existence and uniqueness of a solution for initial problems to the equations under study with a composition of two fractional derivatives. The solutions are presented using the Mittag-Leffler functions. The general results are demonstrated by the example of an initial boundary value problem for an equation with polynomials with respect to the Laplace operator.
Keywords: Riemann — Liouville fractional derivative, Gerasimov — Caputo fractional derivative, Dzhrbashyan — Nersesyan fractional derivative, initial value problem, Mittag-Leffler function, initial boundary value problem.
@article{CHFMJ_2021_6_3_a0,
     author = {A. R. Volkova and E. M. Izhberdeeva and V. E. Fedorov},
     title = {Initial value problems for equations with a composition of fractional derivatives},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {269--277},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a0/}
}
TY  - JOUR
AU  - A. R. Volkova
AU  - E. M. Izhberdeeva
AU  - V. E. Fedorov
TI  - Initial value problems for equations with a composition of fractional derivatives
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2021
SP  - 269
EP  - 277
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a0/
LA  - ru
ID  - CHFMJ_2021_6_3_a0
ER  - 
%0 Journal Article
%A A. R. Volkova
%A E. M. Izhberdeeva
%A V. E. Fedorov
%T Initial value problems for equations with a composition of fractional derivatives
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2021
%P 269-277
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a0/
%G ru
%F CHFMJ_2021_6_3_a0
A. R. Volkova; E. M. Izhberdeeva; V. E. Fedorov. Initial value problems for equations with a composition of fractional derivatives. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 3, pp. 269-277. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a0/

[1] Dzhrbashyan M.M., Nersesyan A.B., “Fractional derivatives and the Cauchy problem for differential equations of fractional order”, News of Academy of Sciences of Armenian SSR. Mathematics, 3:1 (1968), 3–29 (In Russ.) | Zbl

[2] Fedorov V. E., Plekhanova M. V., Izhberdeeva E. M., “Initial value problems of linear equations with the Dzhrbashyan — Nersesyan derivative in Banach spaces”, Symmetry, 13:1058 (2021)

[3] Pskhu A.V., “The fundamental solution of a diffusion-wave equation of fractional order”, Izvestiya: Mathematics, 73:2 (2009), 351–392 (In Russ.) | Zbl

[4] Pskhu A.V., “Fractional diffusion equation with a discretely distributed differentiation operator”, Siberian Elektronic Mathematical Reports, 13 (2016), 1078–1098 | Zbl