A class of distributed order semilinear equations in Banach spaces
Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 3, pp. 342-351.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy problem is studied for a class of semilinear equations which are resolved with respect to the distributed Gerasimov — Caputo derivative in Banach spaces with a linear part generating a resolving family of operators. Using previously obtained results on the solvability of the Cauchy problem for the corresponding linear inhomogeneous equation, the found operator form of its solution, and the contraction mapping theorem, under the improved smoothness condition with respect to spatial variables for the nonlinear operator in the equation the local unique solvability of the Cauchy problem for the considered semilinear equation is proved. The obtained result is applied to the study of a class of initial-boundary value problems for semilinear partial differential equations.
Keywords: the Gerasimov — Caputo fractional derivative, distributed order derivative, semilinear equation, local solution, the existence and the uniquenes of a solution.
@article{CHFMJ_2020_5_3_a7,
     author = {V. E. Fedorov and T. D. Phuong and B. T. Kien and K. V. Boyko and E. M. Izhberdeeva},
     title = {A class of distributed order semilinear equations in {Banach} spaces},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {342--351},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a7/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - T. D. Phuong
AU  - B. T. Kien
AU  - K. V. Boyko
AU  - E. M. Izhberdeeva
TI  - A class of distributed order semilinear equations in Banach spaces
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2020
SP  - 342
EP  - 351
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a7/
LA  - ru
ID  - CHFMJ_2020_5_3_a7
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A T. D. Phuong
%A B. T. Kien
%A K. V. Boyko
%A E. M. Izhberdeeva
%T A class of distributed order semilinear equations in Banach spaces
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2020
%P 342-351
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a7/
%G ru
%F CHFMJ_2020_5_3_a7
V. E. Fedorov; T. D. Phuong; B. T. Kien; K. V. Boyko; E. M. Izhberdeeva. A class of distributed order semilinear equations in Banach spaces. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 3, pp. 342-351. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a7/

[1] Nakhushev A.M., “On continual differential equations and their difference analogues”, Reports of Academy of Sciences, 300:4 (1988), 796–799 (In Russ.) | MR | Zbl

[2] M. Caputo, “Mean fractional order derivatives. Differential equations and filters”, Annali dell'Universita di Ferrara. Sezione VII. Scienze Matematiche, XLI (1995), 73–84 | MR | Zbl

[3] Pskhu A.V., Partial differential equations of fractional order, Nauka Publ., Moscow, 2005, 199 pp. (In Russ.)

[4] S. Umarov, R. Gorenflo, “Cauchy and nonlocal multi-point problems for distributed order pseudo-differential equations”, Zeitschrift für Analysis und ihre Anwendungen, 24 (2005), 449–466 | MR | Zbl

[5] Streletskaya E.M., Fedorov V.E., Debbouche A., “The Cauchy problem for distributed order equations in Banach spaces”, Mathematical Notes of NEFU, 25:1 (2018), 63–72 | MR | Zbl

[6] V. E. Fedorov, E. M. Streletskaya, “Initial-value problems for linear distributed-order differential equations in Banach spaces”, Electronic Journal of Differential Equations, 2018:176 (2018), 1–17 | MR | Zbl

[7] V. E. Fedorov, A. A. Abdrakhmanova, “A class of initial value problems for distributed order equations with a bounded operator”, Stability, Control and Differential Games, eds. A. Tarasyev, V. I. Maksimov, T. Filippova, Springer, 2020, 251–262, xi+389 pp. | DOI

[8] V. E. Fedorov, A. A. Abdrakhmanova, “Distributed order equations in Banach spaxes with sectorial operators”, Transmutation Operators and Applications, eds. V. V. Kravchenko, S. M. Sitnik, Springer Nature Switzerland AD, Cham, 2020, 509–538 | DOI

[9] Fedorov V.E., Gordievskikh D.M., “The Cauchy problem for a semilinear equation of the distributed order”, Chelyabinsk Physical and Mathematical Journal, 4:5 (2019), 439–444 (In Russ.)

[10] Fedorov V.E., “On generating of an analytic in a sector resolving family of operators for a differential equation of the distributed order”, Notes of scientific seminars of PDMI, 489, 2020, 113–129 (In Russ.)

[11] Fedorov, V. E., “Generators of analytic resolving families for distributed order equations and perturbations”, Mathematics, 8:1306 (2020), 15 pp.

[12] Triebel H., Interpolation Theory. Function Spaces. Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, 528 pp. | MR