Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2020_5_3_a7, author = {V. E. Fedorov and T. D. Phuong and B. T. Kien and K. V. Boyko and E. M. Izhberdeeva}, title = {A class of distributed order semilinear equations in {Banach} spaces}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {342--351}, publisher = {mathdoc}, volume = {5}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a7/} }
TY - JOUR AU - V. E. Fedorov AU - T. D. Phuong AU - B. T. Kien AU - K. V. Boyko AU - E. M. Izhberdeeva TI - A class of distributed order semilinear equations in Banach spaces JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2020 SP - 342 EP - 351 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a7/ LA - ru ID - CHFMJ_2020_5_3_a7 ER -
%0 Journal Article %A V. E. Fedorov %A T. D. Phuong %A B. T. Kien %A K. V. Boyko %A E. M. Izhberdeeva %T A class of distributed order semilinear equations in Banach spaces %J Čelâbinskij fiziko-matematičeskij žurnal %D 2020 %P 342-351 %V 5 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a7/ %G ru %F CHFMJ_2020_5_3_a7
V. E. Fedorov; T. D. Phuong; B. T. Kien; K. V. Boyko; E. M. Izhberdeeva. A class of distributed order semilinear equations in Banach spaces. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 3, pp. 342-351. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a7/
[1] Nakhushev A.M., “On continual differential equations and their difference analogues”, Reports of Academy of Sciences, 300:4 (1988), 796–799 (In Russ.) | MR | Zbl
[2] M. Caputo, “Mean fractional order derivatives. Differential equations and filters”, Annali dell'Universita di Ferrara. Sezione VII. Scienze Matematiche, XLI (1995), 73–84 | MR | Zbl
[3] Pskhu A.V., Partial differential equations of fractional order, Nauka Publ., Moscow, 2005, 199 pp. (In Russ.)
[4] S. Umarov, R. Gorenflo, “Cauchy and nonlocal multi-point problems for distributed order pseudo-differential equations”, Zeitschrift für Analysis und ihre Anwendungen, 24 (2005), 449–466 | MR | Zbl
[5] Streletskaya E.M., Fedorov V.E., Debbouche A., “The Cauchy problem for distributed order equations in Banach spaces”, Mathematical Notes of NEFU, 25:1 (2018), 63–72 | MR | Zbl
[6] V. E. Fedorov, E. M. Streletskaya, “Initial-value problems for linear distributed-order differential equations in Banach spaces”, Electronic Journal of Differential Equations, 2018:176 (2018), 1–17 | MR | Zbl
[7] V. E. Fedorov, A. A. Abdrakhmanova, “A class of initial value problems for distributed order equations with a bounded operator”, Stability, Control and Differential Games, eds. A. Tarasyev, V. I. Maksimov, T. Filippova, Springer, 2020, 251–262, xi+389 pp. | DOI
[8] V. E. Fedorov, A. A. Abdrakhmanova, “Distributed order equations in Banach spaxes with sectorial operators”, Transmutation Operators and Applications, eds. V. V. Kravchenko, S. M. Sitnik, Springer Nature Switzerland AD, Cham, 2020, 509–538 | DOI
[9] Fedorov V.E., Gordievskikh D.M., “The Cauchy problem for a semilinear equation of the distributed order”, Chelyabinsk Physical and Mathematical Journal, 4:5 (2019), 439–444 (In Russ.)
[10] Fedorov V.E., “On generating of an analytic in a sector resolving family of operators for a differential equation of the distributed order”, Notes of scientific seminars of PDMI, 489, 2020, 113–129 (In Russ.)
[11] Fedorov, V. E., “Generators of analytic resolving families for distributed order equations and perturbations”, Mathematics, 8:1306 (2020), 15 pp.
[12] Triebel H., Interpolation Theory. Function Spaces. Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, 528 pp. | MR