Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2020_5_3_a6, author = {S. M. Ratseev}, title = {On decoding algorithms for {Goppa} codes}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {327--341}, publisher = {mathdoc}, volume = {5}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a6/} }
S. M. Ratseev. On decoding algorithms for Goppa codes. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 3, pp. 327-341. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a6/
[1] Goppa V.D., “A new class of linear correcting codes”, Problems of information transmission, 6 (1970), 207–212 (In Russ.) | MR | Zbl
[2] MacWilliams F.J., Sloane N.J.A., The Theory of Error Correcting Codes, North-Holland Publ., New York, 1977, 762 pp. | MR | Zbl
[3] Blahut R.E., Theory and Practice of Error Control Codes, Addison-Wesley Publ., Reading, 1983, 500 pp. | MR | MR | Zbl
[4] W. Cary Huffman, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003, 646 pp. | MR | Zbl
[5] S. Gao, “A new algorithm for decoding Reed — Solomon codes”, Communications, Information and Network Security, eds. V. Bhargava, H. V. Poor, V. Tarokh, S. Yoon, Kluwer, Norwell, 2003, 55–68
[6] A. Shiozaki, “Decoding of redundant residue polynomial codes using Euclid’s algorithm”, IEEE Transactions on Information Theory, IT-34:5 (1988), 1351–1354 | DOI | MR
[7] N. J. Patterson, “The algebraic decoding of Goppa codes”, IEEE Transactions on Information Theory, 21:2 (1975), 203–207 | DOI | MR | Zbl
[8] Status Report on the First Round of the NIST Post-Quantum Cryptography Standardization Process, Internal Report 8240, National Institute of Standards and Technology, 2019, 27 pp. (January) | DOI
[9] Fedorenko S.V., “Simple algorithm for decoding algebraic codes”, Information and Control Systems, 2008, no. 3, 23–27 (In Russ.)