On decoding algorithms for Goppa codes
Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 3, pp. 327-341.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the decoding algorithms for Goppa codes. These codes are an important part of some promising post-quantum cryptographic algorithms. The Patterson algorithm is well known for decoding Goppa codes, but it is only applicable for binary codes. Since Goppa codes can be specified using generalized Reed — Solomon codes, any decoding algorithm for such codes is also applicable to Goppa codes. The algorithms for decoding Goppa codes based on the algorithm Sugiyama algorithm, Gao algorithm, Berlekamp — Massey algorithm (Peterson — Gorenstein — Zierler algorithm) are given. The Patterson algorithm is also given.
Keywords: error-correcting code, Goppa code, Reed — Solomon code, code decoding.
@article{CHFMJ_2020_5_3_a6,
     author = {S. M. Ratseev},
     title = {On decoding algorithms for {Goppa} codes},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {327--341},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a6/}
}
TY  - JOUR
AU  - S. M. Ratseev
TI  - On decoding algorithms for Goppa codes
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2020
SP  - 327
EP  - 341
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a6/
LA  - ru
ID  - CHFMJ_2020_5_3_a6
ER  - 
%0 Journal Article
%A S. M. Ratseev
%T On decoding algorithms for Goppa codes
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2020
%P 327-341
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a6/
%G ru
%F CHFMJ_2020_5_3_a6
S. M. Ratseev. On decoding algorithms for Goppa codes. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 3, pp. 327-341. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a6/

[1] Goppa V.D., “A new class of linear correcting codes”, Problems of information transmission, 6 (1970), 207–212 (In Russ.) | MR | Zbl

[2] MacWilliams F.J., Sloane N.J.A., The Theory of Error Correcting Codes, North-Holland Publ., New York, 1977, 762 pp. | MR | Zbl

[3] Blahut R.E., Theory and Practice of Error Control Codes, Addison-Wesley Publ., Reading, 1983, 500 pp. | MR | MR | Zbl

[4] W. Cary Huffman, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003, 646 pp. | MR | Zbl

[5] S. Gao, “A new algorithm for decoding Reed — Solomon codes”, Communications, Information and Network Security, eds. V. Bhargava, H. V. Poor, V. Tarokh, S. Yoon, Kluwer, Norwell, 2003, 55–68

[6] A. Shiozaki, “Decoding of redundant residue polynomial codes using Euclid’s algorithm”, IEEE Transactions on Information Theory, IT-34:5 (1988), 1351–1354 | DOI | MR

[7] N. J. Patterson, “The algebraic decoding of Goppa codes”, IEEE Transactions on Information Theory, 21:2 (1975), 203–207 | DOI | MR | Zbl

[8] Status Report on the First Round of the NIST Post-Quantum Cryptography Standardization Process, Internal Report 8240, National Institute of Standards and Technology, 2019, 27 pp. (January) | DOI

[9] Fedorenko S.V., “Simple algorithm for decoding algebraic codes”, Information and Control Systems, 2008, no. 3, 23–27 (In Russ.)