Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2020_5_3_a2, author = {V. I. Zalyapin and L. D. Menikhes and G. A. Shefer}, title = {On subspaces of an intermediate characteristic in $C^*$}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {285--292}, publisher = {mathdoc}, volume = {5}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a2/} }
TY - JOUR AU - V. I. Zalyapin AU - L. D. Menikhes AU - G. A. Shefer TI - On subspaces of an intermediate characteristic in $C^*$ JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2020 SP - 285 EP - 292 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a2/ LA - ru ID - CHFMJ_2020_5_3_a2 ER -
V. I. Zalyapin; L. D. Menikhes; G. A. Shefer. On subspaces of an intermediate characteristic in $C^*$. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 3, pp. 285-292. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a2/
[1] Tikhonov A.N., Arsenin V.Ya., Methods for solving ill-posed problems, Nauka Publ., Moscow, 1986, 287 pp. (In Russ.)
[2] Vinokurov V.A., Petunin Yu.I., Plichko A.N., “Condition for mesurability and regularizability of mappings, which are inverse for continuous linear operators”, Reports of the USSR Academy of Sciences, 220:3 (1975), 509–511 (In Russ.) | Zbl
[3] Menikhes L.D., “On the regularizability of mappings, which are inverse to integral operators”, Reports of the USSR Academy of Sciences, 241:1 (1978), 282–285 (In Russ.) | Zbl
[4] Menikhes L.D., “Regularizability of some classes of mappings that are inverses of integral operators”, Mathematical Notes, 65:2 (1999), 181–187 | DOI | MR | Zbl
[5] Dunford N., Schwartz J.T., Linear Operators. Part I: General Theory, Wiley-Interscience, Hoboken, New Jersy, 1988, 872 pp. | MR | Zbl