Start control problem for a class of degenerate equations with lower order fractional derivatives
Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 3, pp. 271-284.

Voir la notice de l'article provenant de la source Math-Net.Ru

Fractional order degenerate evolution equation with lower fractional derivatives is studied. The case of a relatively bounded pair of operators in the main part of the equation is considered. For linear and semilinear equations the existence of a unique strong solution of the generalized Showalter — Sidorov problem is proved.These results are used for the proof of the solvability of the start control problem in the linear and the semilinera case. The obtained results are applied to study of an optimal control problem for a fractional order in time degenerate distributed system.
Keywords: fractional derivative, degenerate evolution equation, nonlinear differential equation, start control.
@article{CHFMJ_2020_5_3_a1,
     author = {G. D. Baybulatova},
     title = {Start control problem for a class of degenerate equations with lower order fractional derivatives},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {271--284},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a1/}
}
TY  - JOUR
AU  - G. D. Baybulatova
TI  - Start control problem for a class of degenerate equations with lower order fractional derivatives
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2020
SP  - 271
EP  - 284
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a1/
LA  - ru
ID  - CHFMJ_2020_5_3_a1
ER  - 
%0 Journal Article
%A G. D. Baybulatova
%T Start control problem for a class of degenerate equations with lower order fractional derivatives
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2020
%P 271-284
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a1/
%G ru
%F CHFMJ_2020_5_3_a1
G. D. Baybulatova. Start control problem for a class of degenerate equations with lower order fractional derivatives. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 3, pp. 271-284. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a1/

[1] Nakhushev A.M., Fractional calculus and its application, Fizmatlit Publ., Moscow, 2003, 272 pp. (In Russ.)

[2] Pskhu A.V., Partial differential equations of fractional order, Nauka Publ., Moscow, 2006, 199 pp. (In Russ.)

[3] D. Baleanu, V. E. Fedorov, D. M. Gordievskikh, K. Taş, “Approximate controllability of infinite-dimensional degenerate fractional order systems in the sectorial case”, Mathematics, 7:8 (2019), 735 | DOI

[4] D. Baleanu, A. Fernandez, “On fractional operators and their classifications”, Mathematics, 7:9 (2019), 830 | DOI

[5] E. Shishkina, S. Sitnik, “A fractional equation with left-sided fractional Bessel derivatives of Gerasimov — Caputo type”, Mathematics, 7:12 (2019), 1216 | DOI

[6] J. R. Wang, Y. Zhou, “A class of fractional evolution equations and optimal controls”, Nonlinear Analysis: Real World Applications, 12:1 (2011), 262–272 | DOI | MR | Zbl

[7] D. Baleanu, J. A. T. Machado, A. C. J. Luo, Fractional dynamics and control, Springer, New York–Dordrecht–Heidelberg–London, 2012, x+310 pp. | MR | Zbl

[8] G. M. Bahaa, A. Hamiaz, “Optimal control problem for coupled time-fractional diffusion systems with final observations”, Journal of Taibah University for Science, 13:1 (2018), 124–135 | DOI | MR

[9] M. V. Plekhanova, “Degenerate distributed control systems with fractional time derivative”, Ural Mathematical Journal, 2:2 (2016), 58–71 | DOI | MR | Zbl

[10] Plekhanova M.V., “Solvability of control problems for degenerate evolution equations of fractional order”, Chelyabinsk Physical and Mathematical Journal, 2:1 (2017), 53–65 (In Russ.) | MR

[11] M. V. Plekhanova, “Distributed control problems for a class of degenerate semilinear evolution equations”, Journal of Computational and Applied Mathematics, 312 (2017), 39–46 | DOI | MR | Zbl

[12] M. V. Plekhanova, G. D. Baybulatova, “Problems of hard control for a class of degenerate fractional order evolution equations”, Lecture Notes in Computer Science, 11548, 2019, 501–512 | DOI | MR | Zbl

[13] M. V. Plekhanova, G. D. Baybulatova, “Semilinear equations in Banach spaces with lower fractional derivatives”, Springer Proceedings in Mathematics and Statistics, 292, 2019, 81–93 | DOI | MR | Zbl

[14] M. V. Plekhanova, G. D. Baybulatova, “A class of semilinear degenerate equations with fractional lower order derivatives”, Proceedings of the International Conference devoted to the 95th anniversary of Academician N. N. Krasovskii, Stability, Control, Differential Games (SCDG2019) (Yekaterinburg, Russia, 16–20 September 2019), eds. T. F. Filippova, V. I. Maksimov, A. M. Tarasyev, 2019, 444–448

[15] M. V. Plekhanova, G. D. Baybulatova, “On strong solutions for a class of semilinear fractional degenerate evolution equations with lower fractional derivatives”, Mathematical Modelling in Applied Sciences, 2020 (First published: 12 April 2020) | DOI | Zbl

[16] M. V. Plekhanova, G. D. Baybulatova, “Multi-term fractional degenerate evolution equations and optimal control problems”, Mathematics, 8:4 (2020), 483 | DOI

[17] V. E. Fedorov, A. A. Abdrakhmanova, “Distributed order equations in Banach spaxes with sectorial operators”, Transmutation Operators and Applications, Springer Nature Switzerland AD, Cham, 2020, 509–538 | DOI

[18] Plekhanova M.V., “Start control problems for fractional evolution equations”, Chelyabinsk Physical and Mathematical Journal, 1:3 (2016), 15–36 (In Russ.) | MR

[19] Shuklina A.F., Plekhanova M.V., “Mixed control problems for Sobolev's system”, Chelyabinsk Physical and Mathematical Journal, 1:2 (2016), 78–84 (In Russ.) | MR

[20] Plekhanova M.V., Shuklina A.F., “Mixed control for linear infinite-dimensional systems of fractional order”, Chelyabinsk Physical and Mathematical Journal, 5:1 (2020), 32–43 (In Russ.)

[21] E. G. Bajlekova, Fractional evolution equations in Banach spaces, PhD thesis, Eindhoven University of Technology, University Press Facilities, Eindhoven, 2001, 107 pp. | MR | Zbl

[22] Lions J.-L., Quelques Méthodes De Résolution Des Problémes Aux Limites NonLinéaires, Dunod Gauthier-Villars, Paris, 1969, xx+554 pp. | MR

[23] Korpusov M.O., Sveshnikov A.G., Nonlinear functional analysis and mathematical modeling in physics: Geometric and topological properties of linear spaces, Krasand Publ., Moscow, 2011, 416 pp. (In Russ.)

[24] Fursikov A.V., Optimal control of distributed systems. Theory and applications, AMS, Providence, Rhode Island, 1999, 305 pp. (In Russ.)

[25] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, 216 pp. | MR | Zbl