Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2020_5_2_a3, author = {V. Yu. Shadrin and M. F. Semenov and G. I. Ivanov and O. I. Matveeva}, title = {2D angular radiation coefficient}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {233--242}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_2_a3/} }
TY - JOUR AU - V. Yu. Shadrin AU - M. F. Semenov AU - G. I. Ivanov AU - O. I. Matveeva TI - 2D angular radiation coefficient JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2020 SP - 233 EP - 242 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_2_a3/ LA - ru ID - CHFMJ_2020_5_2_a3 ER -
V. Yu. Shadrin; M. F. Semenov; G. I. Ivanov; O. I. Matveeva. 2D angular radiation coefficient. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 2, pp. 233-242. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_2_a3/
[1] Siegel R., Howell J.R., Heat transfer by radiation, Mir Publ., Moscow, 1975, 934 pp. (In Russ.)
[2] Polyak G.L., “Algebra of homogeneous flows”, News of G.M. Krzhizhanovskiy Energetic Institute of USSR Academy of Sciences, 3:1–2 (1935), 53–75 (In Russ.)
[3] M. W. Crofton, “On the theory of local probability”, Trans. of the Royal Soc. of London, 1868, 158–181
[4] Sofronova E.F., Shadrin V.Yu., “On angular radiation coefficients approximate computation with radiant heat transfer between two plane convex quadrangles”, Mathematical Notes of Yakut State University, 13:1 (2006), 166–174 (In Russ.)
[5] Bogoslovsky V.N., Building thermal physics (thermophysical bases of heating, ventilation and air conditioning), Higher School Publ., Moscow, 1982, 415 pp. (In Russ.)